Multiobjective optimization by Artificial Fish Swarm Algorithm

M. Jiang, Kongcun Zhu
{"title":"Multiobjective optimization by Artificial Fish Swarm Algorithm","authors":"M. Jiang, Kongcun Zhu","doi":"10.1109/CSAE.2011.5952729","DOIUrl":null,"url":null,"abstract":"Artificial Fish Swarm Algorithm (AFSA) is a kind of swarm intelligence algorithm, which has the features of fast convergence, good global search capability, strong robustness and so on. In this paper, an approach using AFSA to solve the multiobjective optimization problem is proposed. In this algorithm, the concept of Pareto dominance is used to evaluate the pros and cons of Artificial Fish (AF). Artificial fish swarm search the solution space in parallel and External Record Set is used to save the found Pareto optimal solutions. The simulation results of 4 benchmark test functions illustrate the effectiveness of the proposed algorithm.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"57 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Artificial Fish Swarm Algorithm (AFSA) is a kind of swarm intelligence algorithm, which has the features of fast convergence, good global search capability, strong robustness and so on. In this paper, an approach using AFSA to solve the multiobjective optimization problem is proposed. In this algorithm, the concept of Pareto dominance is used to evaluate the pros and cons of Artificial Fish (AF). Artificial fish swarm search the solution space in parallel and External Record Set is used to save the found Pareto optimal solutions. The simulation results of 4 benchmark test functions illustrate the effectiveness of the proposed algorithm.
基于人工鱼群算法的多目标优化
人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA)是一种群体智能算法,具有收敛速度快、全局搜索能力好、鲁棒性强等特点。本文提出了一种用AFSA求解多目标优化问题的方法。在该算法中,利用帕累托优势的概念来评价人工鱼的优缺点。人工鱼群并行搜索解空间,利用外部记录集保存找到的Pareto最优解。4个基准测试函数的仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信