Dynamic Portfolio Management Based on Pair Trading and Deep Reinforcement Learning

F. Xu, S. Tan
{"title":"Dynamic Portfolio Management Based on Pair Trading and Deep Reinforcement Learning","authors":"F. Xu, S. Tan","doi":"10.1145/3440840.3440861","DOIUrl":null,"url":null,"abstract":"Existing portfolio management methods have made great progress in diversifying non-systematic risks, but they have ignored systemic risks. In response to this issue, we proposed a dynamic, market-neutral, risk-diversified portfolio management model by combining the ideas of pair trading strategy, deep reinforcement learning with traditional portfolio management model. We conduct an experiment on the Chinese A-share market by selecting 32 pairs of stocks. The experiment results showed that the proposed pair-based deep portfolio model has superiority for dynamic portfolio management problem in trade-off investment returns and risks.","PeriodicalId":273859,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440840.3440861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Existing portfolio management methods have made great progress in diversifying non-systematic risks, but they have ignored systemic risks. In response to this issue, we proposed a dynamic, market-neutral, risk-diversified portfolio management model by combining the ideas of pair trading strategy, deep reinforcement learning with traditional portfolio management model. We conduct an experiment on the Chinese A-share market by selecting 32 pairs of stocks. The experiment results showed that the proposed pair-based deep portfolio model has superiority for dynamic portfolio management problem in trade-off investment returns and risks.
基于配对交易和深度强化学习的动态投资组合管理
现有的投资组合管理方法在分散非系统性风险方面取得了很大进展,但却忽视了系统性风险。针对这一问题,我们将配对交易策略、深度强化学习的思想与传统的投资组合管理模型相结合,提出了一个动态的、市场中性的、风险多元化的投资组合管理模型。我们选取了32对股票,对中国a股市场进行了实验。实验结果表明,本文提出的基于对的深度投资组合模型对于投资收益与风险权衡的动态投资组合管理问题具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信