A Robust Estimation Method for Nonlinear Model Coefficients Using Ridge Regression

Qiang Xu, Wei Zhang, Guizhen Wang, Xiangjie Xia, Ying Liu, Youxi Tang
{"title":"A Robust Estimation Method for Nonlinear Model Coefficients Using Ridge Regression","authors":"Qiang Xu, Wei Zhang, Guizhen Wang, Xiangjie Xia, Ying Liu, Youxi Tang","doi":"10.1109/ISSPIT51521.2020.9408986","DOIUrl":null,"url":null,"abstract":"In this paper, we study the robustness of least squares (LS) estimation for the modeling of nonlinear systems, and propose an estimation method with enhanced robustness. We first show some motivations for improving the robustness when estimating coefficients of a nonlinear model. In particular, without a robust estimation, two recent linearization techniques would fail to linearize a practical nonlinear system. Then, we analyze the commonly-used LS estimation in the application of the nonlinear system modeling, and show its poor robustness is originated from the correlation effects. As a result, the estimated coefficients will deviate unpredictably from the true coefficients. Based on the above analysis, we present a ridge regression method to remove the correlation effects, and hence improve the robustness of the coefficients estimation. Some data is captured from a practical 1-watt power amplifier (PA) to estimate the coefficients of the PA model, and the superiority of our estimation method over the conventional LS-based method is demonstrated.","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the robustness of least squares (LS) estimation for the modeling of nonlinear systems, and propose an estimation method with enhanced robustness. We first show some motivations for improving the robustness when estimating coefficients of a nonlinear model. In particular, without a robust estimation, two recent linearization techniques would fail to linearize a practical nonlinear system. Then, we analyze the commonly-used LS estimation in the application of the nonlinear system modeling, and show its poor robustness is originated from the correlation effects. As a result, the estimated coefficients will deviate unpredictably from the true coefficients. Based on the above analysis, we present a ridge regression method to remove the correlation effects, and hence improve the robustness of the coefficients estimation. Some data is captured from a practical 1-watt power amplifier (PA) to estimate the coefficients of the PA model, and the superiority of our estimation method over the conventional LS-based method is demonstrated.
基于岭回归的非线性模型系数鲁棒估计方法
本文研究了非线性系统建模中最小二乘估计的鲁棒性,提出了一种增强鲁棒性的估计方法。我们首先展示了在估计非线性模型系数时提高鲁棒性的一些动机。特别是,如果没有鲁棒估计,两种最近的线性化技术将无法线性化一个实际的非线性系统。然后,分析了非线性系统建模中常用的最小二乘估计的应用,指出其鲁棒性差的根源在于相关效应。结果,估计的系数将不可预测地偏离真实系数。基于上述分析,我们提出了一种岭回归方法来消除相关影响,从而提高系数估计的稳健性。从一个实际的1瓦功率放大器(PA)上捕获一些数据来估计PA模型的系数,并证明了我们的估计方法比传统的基于ls的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信