Fariba Sarhangnia, Nona Ali Asgharzadeholiaee, Milad Boshkani Zadeh
{"title":"A Novel Multilayer Model for Link Prediction in Online Social Networks Based on Reliable Paths","authors":"Fariba Sarhangnia, Nona Ali Asgharzadeholiaee, Milad Boshkani Zadeh","doi":"10.1142/s0219649222500253","DOIUrl":null,"url":null,"abstract":"Link Prediction (LP) is one of the critical problems in Online Social Networks (OSNs) analysis. LP is a technique for predicting forthcoming or missing links based on current information in the OSN. Typically, modelling an OSN platform is done in a single-layer scheme. However, this is a limitation which might lead to incorrect descriptions of some real-world details. To overcome this limitation, this paper presents a multilayer model of OSN for the LP problem by analysing Twitter and Foursquare networks. LP in multilayer networks involves performing LP on a target layer benefitting from the structural information of the other layers. Here, a novel criterion is proposed, which calculates the similarity between users by forming intralayer and interlayer links in a two-layer network (i.e. Twitter and Foursquare). Particularly, LP in the Foursquare layer is done by considering the two-layer structural information. In this paper, according to the available information from the Twitter and Foursquare OSNs, a weighted graph is created and then various topological features are extracted from it. Based on the extracted features, a database with two classes of link existence and no link has been created, and therefore the problem of LP has become a two-class classification problem that can be solved by supervised learning methods. To prove the better performance of the proposed method, Katz and FriendLink indices as well as SEM-Path algorithm have been used for comparison. Evaluations results show that the proposed method can predict new links with better precision.","PeriodicalId":127309,"journal":{"name":"J. Inf. Knowl. Manag.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219649222500253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Link Prediction (LP) is one of the critical problems in Online Social Networks (OSNs) analysis. LP is a technique for predicting forthcoming or missing links based on current information in the OSN. Typically, modelling an OSN platform is done in a single-layer scheme. However, this is a limitation which might lead to incorrect descriptions of some real-world details. To overcome this limitation, this paper presents a multilayer model of OSN for the LP problem by analysing Twitter and Foursquare networks. LP in multilayer networks involves performing LP on a target layer benefitting from the structural information of the other layers. Here, a novel criterion is proposed, which calculates the similarity between users by forming intralayer and interlayer links in a two-layer network (i.e. Twitter and Foursquare). Particularly, LP in the Foursquare layer is done by considering the two-layer structural information. In this paper, according to the available information from the Twitter and Foursquare OSNs, a weighted graph is created and then various topological features are extracted from it. Based on the extracted features, a database with two classes of link existence and no link has been created, and therefore the problem of LP has become a two-class classification problem that can be solved by supervised learning methods. To prove the better performance of the proposed method, Katz and FriendLink indices as well as SEM-Path algorithm have been used for comparison. Evaluations results show that the proposed method can predict new links with better precision.