Self-consistent distributions simulation for a charged particle beam

O. Drivotin, N. Ovsyannikov
{"title":"Self-consistent distributions simulation for a charged particle beam","authors":"O. Drivotin, N. Ovsyannikov","doi":"10.1109/SCP.2015.7342106","DOIUrl":null,"url":null,"abstract":"Methods of numerical solution of the Vlasov equation for a charged particle beam are concerned. These methods are based on the method of macroparticles and require a great number of computations. As a result of the investigation, we find optimal combinations of parameters, which allow to increase computational efficiency. Accuracy of the methods was determined by comparing of a numerical solution and a corresponding analytical solution of the Vlasov equation.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Methods of numerical solution of the Vlasov equation for a charged particle beam are concerned. These methods are based on the method of macroparticles and require a great number of computations. As a result of the investigation, we find optimal combinations of parameters, which allow to increase computational efficiency. Accuracy of the methods was determined by comparing of a numerical solution and a corresponding analytical solution of the Vlasov equation.
带电粒子束的自洽分布模拟
讨论了带电粒子束的Vlasov方程的数值求解方法。这些方法都是基于宏观粒子的方法,需要大量的计算。作为调查的结果,我们找到了参数的最佳组合,这允许提高计算效率。通过比较Vlasov方程的数值解和相应的解析解,确定了方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信