Six dimensional clustering segmentation of color point cloud

Z. Ximin, Wan Wanggen
{"title":"Six dimensional clustering segmentation of color point cloud","authors":"Z. Ximin, Wan Wanggen","doi":"10.1109/ICALIP.2016.7846670","DOIUrl":null,"url":null,"abstract":"This paper focuses on the clustering segmentation of 3D color point cloud. We extend the mean shift algorithm to the 3D xyz space, and what's more, we also consider the rgb color information, so the 6 dimensional data is adopted in the algorithm. The cluster center converges to the joint position of the local maximum density and the minimum gradient change of color, so our clustering segmentation not only considers the local geometrical features, but also utilizes the color information. The experiments show that our segmentation has better region consistency and has clear segmenting border in different color neighbors.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper focuses on the clustering segmentation of 3D color point cloud. We extend the mean shift algorithm to the 3D xyz space, and what's more, we also consider the rgb color information, so the 6 dimensional data is adopted in the algorithm. The cluster center converges to the joint position of the local maximum density and the minimum gradient change of color, so our clustering segmentation not only considers the local geometrical features, but also utilizes the color information. The experiments show that our segmentation has better region consistency and has clear segmenting border in different color neighbors.
彩色点云的六维聚类分割
本文主要研究三维彩色点云的聚类分割问题。我们将mean shift算法扩展到3D xyz空间,并且考虑了rgb的颜色信息,所以算法中采用了6维数据。聚类中心收敛到局部最大密度和最小颜色梯度变化的联合位置,因此我们的聚类分割既考虑了局部几何特征,又利用了颜色信息。实验表明,我们的分割方法具有较好的区域一致性,在不同颜色的邻域上具有清晰的分割边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信