Pixellation and Curve Turning

R. Schwartz
{"title":"Pixellation and Curve Turning","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.10","DOIUrl":null,"url":null,"abstract":"This chapter revisits the idea of pixelated spacetime diagrams considered in Chapter 5. It proves a technical result, the Curve Turning Theorem, which gives a way to understand the spacetime diagrams in terms of patterns of oriented lines. Section 6.2 assigns directions to all the particle lines. This is done using a key feature of the oriented plaid model which has already been established: the directions of all instances of a particle are the same. The Curve Turning Theorem is also stated at the end of this section. Section 6.3 proves a technical result about the spacing of the particle lines in spacetime diagrams. This result will help with the proof of the Curve Turning Theorem. Section 6.4 and 6.5 prove the Curve Turning Theorem, respectively, in the vertical and the horizontal case. Section 6.6 gives two applications of the Curve Turning Theorem.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter revisits the idea of pixelated spacetime diagrams considered in Chapter 5. It proves a technical result, the Curve Turning Theorem, which gives a way to understand the spacetime diagrams in terms of patterns of oriented lines. Section 6.2 assigns directions to all the particle lines. This is done using a key feature of the oriented plaid model which has already been established: the directions of all instances of a particle are the same. The Curve Turning Theorem is also stated at the end of this section. Section 6.3 proves a technical result about the spacing of the particle lines in spacetime diagrams. This result will help with the proof of the Curve Turning Theorem. Section 6.4 and 6.5 prove the Curve Turning Theorem, respectively, in the vertical and the horizontal case. Section 6.6 gives two applications of the Curve Turning Theorem.
像素化和曲线转弯
本章回顾了第5章中考虑的像素化时空图的概念。它证明了一个技术性的结果——曲线翻转定理,它提供了一种从有向线模式的角度来理解时空图的方法。6.2节为所有粒子线指定方向。这是利用已经建立的定向格子模型的一个关键特征来完成的:一个粒子的所有实例的方向是相同的。曲线翻转定理也在本节的末尾说明。第6.3节证明了一个关于时空图中粒子线间距的技术结果。这一结果将有助于曲线翻转定理的证明。第6.4节和第6.5节分别在竖直和水平情况下证明了曲线翻转定理。第6.6节给出了曲线翻转定理的两个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信