Body-part tracking from partial-view depth data

Manolis Vasileiadis, Dimitrios Giakoumis, S. Malassiotis, I. Kostavelis, D. Tzovaras
{"title":"Body-part tracking from partial-view depth data","authors":"Manolis Vasileiadis, Dimitrios Giakoumis, S. Malassiotis, I. Kostavelis, D. Tzovaras","doi":"10.1109/3DTV.2017.8280408","DOIUrl":null,"url":null,"abstract":"This paper presents a high-accuracy body-part tracking algorithm, capable of achieving efficient human motion analysis from partial view depth-data, suitable for deployment in real-life applications. The algorithm uses a consumer-grade depth camera for data input and combines a discriminative body part estimator along with a generative tracker, utilizing a realistic human body model, in order to track individual body limbs in short camera-distance, partial-view scenarios. Additionally, a shape adaptation feature is also introduced in order to further morph the human model based on the observations. The implementation is tested in a lower-body limbs tracking scenario, achieving promising accuracy and performance on consumer-grade hardware. Moreover, a lower-body motion dataset is also provided, consisting of 16 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.","PeriodicalId":279013,"journal":{"name":"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2017.8280408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a high-accuracy body-part tracking algorithm, capable of achieving efficient human motion analysis from partial view depth-data, suitable for deployment in real-life applications. The algorithm uses a consumer-grade depth camera for data input and combines a discriminative body part estimator along with a generative tracker, utilizing a realistic human body model, in order to track individual body limbs in short camera-distance, partial-view scenarios. Additionally, a shape adaptation feature is also introduced in order to further morph the human model based on the observations. The implementation is tested in a lower-body limbs tracking scenario, achieving promising accuracy and performance on consumer-grade hardware. Moreover, a lower-body motion dataset is also provided, consisting of 16 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.
从部分视图深度数据进行身体部分跟踪
本文提出了一种高精度的身体部位跟踪算法,能够从局部视图深度数据中实现高效的人体运动分析,适合于实际应用。该算法使用消费级深度相机进行数据输入,并结合了判别身体部位估计器和生成跟踪器,利用逼真的人体模型,以便在短镜头距离和局部视图场景中跟踪单个身体肢体。此外,还引入了形状适应特征,以便根据观测结果进一步变形人体模型。该实现在下肢跟踪场景中进行了测试,在消费级硬件上实现了令人满意的准确性和性能。此外,还提供了一个下半身运动数据集,该数据集由16个真实世界序列组成,使用来自商业动作捕捉系统的自动地面真相注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信