Ample Probability in Cognition

M. Burgin, P. Rocchi
{"title":"Ample Probability in Cognition","authors":"M. Burgin, P. Rocchi","doi":"10.1109/ICCICC46617.2019.9146027","DOIUrl":null,"url":null,"abstract":"This paper assumes probability is a bridge linking cognition and computing. We begin with the dynamic and causal structuring of random events and represent them in the form of ‘named sets’. We construct a probability function called ‘ample probability’ for such events and develop elements of an axiomatic ample probability theory. The proposed axioms are consistent and independent giving in the limit Kolmogorov's axiom system for conventional probability. In addition, we comment on the relations between ample probability, conditional probability and quantum probability.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper assumes probability is a bridge linking cognition and computing. We begin with the dynamic and causal structuring of random events and represent them in the form of ‘named sets’. We construct a probability function called ‘ample probability’ for such events and develop elements of an axiomatic ample probability theory. The proposed axioms are consistent and independent giving in the limit Kolmogorov's axiom system for conventional probability. In addition, we comment on the relations between ample probability, conditional probability and quantum probability.
认知中的充分概率
本文认为概率是连接认知和计算的桥梁。我们从随机事件的动态和因果结构开始,并以“命名集”的形式表示它们。我们为这些事件构造了一个称为“充分概率”的概率函数,并发展了公理化充分概率理论的要素。在常规概率的极限Kolmogorov公理系统中,所提出的公理是一致的和独立的。此外,我们还讨论了充裕概率、条件概率和量子概率之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信