To Monitor and Detect Suspicious Transactions in a Financial Transaction System Through Database Forensic Audit and Rule-Based Outlier Detection Model

H. Khanuja, D. Adane
{"title":"To Monitor and Detect Suspicious Transactions in a Financial Transaction System Through Database Forensic Audit and Rule-Based Outlier Detection Model","authors":"H. Khanuja, D. Adane","doi":"10.4018/978-1-5225-7356-2.CH012","DOIUrl":null,"url":null,"abstract":"The objective of this chapter is to monitor database transactions and provide information accountability to databases. It provides a methodology to retrieve and standardize different audit logs in a uniform XML format which are extracted from different databases. The financial transactions obtained through audit logs are then analyzed with database forensic audit. The transactions are examined, detected, and classified as per regulations and well-defined RBI antimony laundering rules to obtain outliers and suspicious transactions within audit logs. Bayesian network is used in this research to represent rule-based outlier detection model which identifies the risk level of the suspicious transactions.","PeriodicalId":113538,"journal":{"name":"Organizational Auditing and Assurance in the Digital Age","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Auditing and Assurance in the Digital Age","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7356-2.CH012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of this chapter is to monitor database transactions and provide information accountability to databases. It provides a methodology to retrieve and standardize different audit logs in a uniform XML format which are extracted from different databases. The financial transactions obtained through audit logs are then analyzed with database forensic audit. The transactions are examined, detected, and classified as per regulations and well-defined RBI antimony laundering rules to obtain outliers and suspicious transactions within audit logs. Bayesian network is used in this research to represent rule-based outlier detection model which identifies the risk level of the suspicious transactions.
利用数据库取证审计和基于规则的离群点检测模型对金融交易系统中的可疑交易进行监控和检测
本章的目标是监控数据库事务并向数据库提供信息问责制。它提供了一种方法,以统一的XML格式检索和标准化从不同数据库提取的不同审计日志。通过审计日志获得的财务事务然后使用数据库取证审计进行分析。根据法规和定义良好的RBI洗钱规则对交易进行检查、检测和分类,以在审计日志中获取异常值和可疑交易。本研究采用贝叶斯网络来表示基于规则的异常点检测模型,该模型能够识别可疑交易的风险等级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信