A learning algorithm for metasearching using rough set theory

R. Ali, M. M. Sufyan Beg
{"title":"A learning algorithm for metasearching using rough set theory","authors":"R. Ali, M. M. Sufyan Beg","doi":"10.1109/ICCITECHN.2007.4579421","DOIUrl":null,"url":null,"abstract":"Metasearching is the process of combining search results of different search systems into a single set of ranked results, which is expected to be better than results of best of the participating search systems. In this paper, we present a supervised learning algorithm for metasearching. Our algorithm learns the ranking rules on the basis of user feedback based metasearching for the queries in the training set. We use rough set theory to mine the ranking rules. The ranking rules are validated using cross validation. The best of the ranking rules is then used to estimate the results of metasearching for the other queries. We compare our method with modified Shimura technique. We claim that our method is more useful than modified Shimura technique as it models userpsilas preference.","PeriodicalId":338170,"journal":{"name":"2007 10th international conference on computer and information technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th international conference on computer and information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2007.4579421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Metasearching is the process of combining search results of different search systems into a single set of ranked results, which is expected to be better than results of best of the participating search systems. In this paper, we present a supervised learning algorithm for metasearching. Our algorithm learns the ranking rules on the basis of user feedback based metasearching for the queries in the training set. We use rough set theory to mine the ranking rules. The ranking rules are validated using cross validation. The best of the ranking rules is then used to estimate the results of metasearching for the other queries. We compare our method with modified Shimura technique. We claim that our method is more useful than modified Shimura technique as it models userpsilas preference.
基于粗糙集理论的元搜索学习算法
元搜索是将不同搜索系统的搜索结果组合成一组排名结果的过程,期望该结果比参与搜索系统的最佳结果更好。在本文中,我们提出了一种用于元搜索的监督学习算法。我们的算法基于基于用户反馈的元搜索对训练集中的查询学习排序规则。我们使用粗糙集理论来挖掘排序规则。使用交叉验证对排名规则进行验证。然后使用最好的排序规则来估计其他查询的元搜索结果。并与改进的Shimura技术进行了比较。我们声称我们的方法比改进的Shimura技术更有用,因为它模拟了用户的偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信