Enhanced Photovoltaic and Photosensing Performances in Gadolinium-Doped Bismuth Ferrite

C. Tu, Yi-Shin Jou, Pin-Yi Chen, Cheng-Sao Chen, Yu-Chen Hsu, R. Chien, V. Schmidt, Kuei-Chih Feng, Sheng-Fen Wang, S. Haw
{"title":"Enhanced Photovoltaic and Photosensing Performances in Gadolinium-Doped Bismuth Ferrite","authors":"C. Tu, Yi-Shin Jou, Pin-Yi Chen, Cheng-Sao Chen, Yu-Chen Hsu, R. Chien, V. Schmidt, Kuei-Chih Feng, Sheng-Fen Wang, S. Haw","doi":"10.2139/ssrn.3659803","DOIUrl":null,"url":null,"abstract":"Recent emerging developments have demonstrated that bismuth ferrite is one of the promising lead-free perovskite materials for solar-energy harvesting, photoelectrochemical conversion, and photodetector. This work reports high short-circuit photocurrent densities ~1.2×1033 µA/cm2 in p-type gadolinium (Gd)-doped BiFeO3 ceramic with n-type indium-tin-oxide under 405 nm irradiation and sunlight at 102 mW/cm2 intensity, respectively. A polarization-enhanced photosensing responsivity (R) of ~5.4×10-2 A/W and detectivity (D*) of ~1.5×1011 Jones were achieved at low 405 nm irradiation. Enhanced photovoltaic conversion via a prior electric-field poling can be attributed to the p-n junction and field-modulated Schottky barrier in conjunction with domain nucleation, ordered polar nano-regions (PNRs), and increased O 2p-Fe 3d orbital hybridization. The network of domain walls and grain boundaries serves as conduction pathways for the photo-generated charge carriers. The remarkable improvement of photocurrent in polycrystalline Gd-doped BiFeO3 opens a window for using bismuth ferrite materials in self-powered UV-visible photodetector.","PeriodicalId":346973,"journal":{"name":"EngRN: Energy Resources (Topic)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Energy Resources (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3659803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent emerging developments have demonstrated that bismuth ferrite is one of the promising lead-free perovskite materials for solar-energy harvesting, photoelectrochemical conversion, and photodetector. This work reports high short-circuit photocurrent densities ~1.2×1033 µA/cm2 in p-type gadolinium (Gd)-doped BiFeO3 ceramic with n-type indium-tin-oxide under 405 nm irradiation and sunlight at 102 mW/cm2 intensity, respectively. A polarization-enhanced photosensing responsivity (R) of ~5.4×10-2 A/W and detectivity (D*) of ~1.5×1011 Jones were achieved at low 405 nm irradiation. Enhanced photovoltaic conversion via a prior electric-field poling can be attributed to the p-n junction and field-modulated Schottky barrier in conjunction with domain nucleation, ordered polar nano-regions (PNRs), and increased O 2p-Fe 3d orbital hybridization. The network of domain walls and grain boundaries serves as conduction pathways for the photo-generated charge carriers. The remarkable improvement of photocurrent in polycrystalline Gd-doped BiFeO3 opens a window for using bismuth ferrite materials in self-powered UV-visible photodetector.
掺钆铋铁氧体增强的光电和光敏性能
近年来的发展表明,铋铁氧体是一种很有前途的无铅钙钛矿材料,可用于太阳能收集、光电化学转换和光电探测器。本文报道了在405 nm辐照和102 mW/cm2强度的太阳光下,p型钆(Gd)掺杂n型铟锡氧化物BiFeO3陶瓷的高短路光电流密度~1.2×1033µA/cm2。在405 nm低辐照下,获得了~5.4×10-2 A/W的偏振增强光敏响应度(R)和~1.5×1011 Jones的探测率(D*)。通过电场极化增强光伏转换可归因于p-n结和场调制肖特基势垒与畴成核、有序极性纳米区(pnr)和O 2p-Fe三维轨道杂化的增加。畴壁和晶界网络为光产生的载流子提供了传导途径。多晶gd掺杂BiFeO3光电流的显著改善为铋铁氧体材料在自供电紫外可见光电探测器中的应用打开了一扇窗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信