Adversarial training for low-complexity convolutional neural networks using in spectrum sensing

Hang Liu, Xu Zhu, T. Fujii
{"title":"Adversarial training for low-complexity convolutional neural networks using in spectrum sensing","authors":"Hang Liu, Xu Zhu, T. Fujii","doi":"10.1109/ICAIIC.2019.8668844","DOIUrl":null,"url":null,"abstract":"Spectrum sensing of orthogonal frequency division multiplex (OFDM) system has always been a challenge in cognitive radios (CR). In this paper on the basis of “classification converted sensing” scheme, the cyclostationary periodogram generated by OFDM pilots is deduced in the form of images. These images are then plugged into the convolutional neural networks (CNNs) for classifications due to CNN's strength in image classification. More importantly, certain of concerns about CNN adoption in CR system is settled. Firstly, to achieve spectrum sensing against severe noise pollution and channel fading, we use the adversarial training where a CR-specific, modified training database is proposed. Then, to settle the serviceability which is constrained by the computing power at the CR user end, the input images and the CNN architecture are refined to guarantee a low-complexity but high-performance sensing scheme. Simulation results proved our method possesses an excellent sensing capability while achieving higher detection accuracy over the conventional way.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8668844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spectrum sensing of orthogonal frequency division multiplex (OFDM) system has always been a challenge in cognitive radios (CR). In this paper on the basis of “classification converted sensing” scheme, the cyclostationary periodogram generated by OFDM pilots is deduced in the form of images. These images are then plugged into the convolutional neural networks (CNNs) for classifications due to CNN's strength in image classification. More importantly, certain of concerns about CNN adoption in CR system is settled. Firstly, to achieve spectrum sensing against severe noise pollution and channel fading, we use the adversarial training where a CR-specific, modified training database is proposed. Then, to settle the serviceability which is constrained by the computing power at the CR user end, the input images and the CNN architecture are refined to guarantee a low-complexity but high-performance sensing scheme. Simulation results proved our method possesses an excellent sensing capability while achieving higher detection accuracy over the conventional way.
用于频谱感知的低复杂度卷积神经网络的对抗训练
正交频分复用(OFDM)系统的频谱感知一直是认知无线电(CR)领域的一个难题。本文在“分类转换传感”方案的基础上,以图像的形式推导了OFDM导频产生的循环平稳周期图。由于CNN在图像分类方面的优势,这些图像随后被插入卷积神经网络(CNN)进行分类。更重要的是,解决了CR系统中对CNN采用的一些担忧。首先,为了实现对严重噪声污染和信道衰落的频谱感知,我们使用对抗性训练,其中提出了针对cr的改进训练数据库。然后,为了解决受CR用户端计算能力限制的可服务性,对输入图像和CNN架构进行了细化,以保证低复杂度和高性能的传感方案。仿真结果表明,该方法具有良好的传感能力,同时比传统方法具有更高的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信