Efficient implimentation of NTRU over all one polynomial ring with CVMA

Koki Misumi, Y. Nogami
{"title":"Efficient implimentation of NTRU over all one polynomial ring with CVMA","authors":"Koki Misumi, Y. Nogami","doi":"10.1109/ICCE-TW.2015.7216956","DOIUrl":null,"url":null,"abstract":"It is shown that public key cryptosystems based on discrete logarithm probrem can be solved if the quantum computer and Shor's algorithm are realized. Thus a new cryptosystem called post-quantum cryptosystem so as not to be broken by quantum computer is needed. NTRU is proposed by Hoffstein et al. in 1998. It is one of post-quantum cryptosystem. It is based on problems on lattice for which there are no efficient algorithms to solve. In NTRU, using convolution polynomial ring as Zq[X]/(Xn-1). However, (X-1), that is a trivial factor of Xn-1 sometimes make problems. Thus we consider a variant using a quotient polynomial ring such as Zq[X]/(Xn + Xx-1 +...+X + 1) and CVMA: Cyclic Vector Multiplication Algorithm.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is shown that public key cryptosystems based on discrete logarithm probrem can be solved if the quantum computer and Shor's algorithm are realized. Thus a new cryptosystem called post-quantum cryptosystem so as not to be broken by quantum computer is needed. NTRU is proposed by Hoffstein et al. in 1998. It is one of post-quantum cryptosystem. It is based on problems on lattice for which there are no efficient algorithms to solve. In NTRU, using convolution polynomial ring as Zq[X]/(Xn-1). However, (X-1), that is a trivial factor of Xn-1 sometimes make problems. Thus we consider a variant using a quotient polynomial ring such as Zq[X]/(Xn + Xx-1 +...+X + 1) and CVMA: Cyclic Vector Multiplication Algorithm.
利用CVMA在所有一个多项式环上有效地实现了NTRU
研究表明,在量子计算机和肖尔算法的基础上,可以求解基于离散对数问题的公钥密码系统。因此,需要一种新的密码系统,称为后量子密码系统,以免被量子计算机破解。NTRU由Hoffstein等人于1998年提出。它是一种后量子密码系统。它是基于晶格上的问题,没有有效的算法来解决。在NTRU中,使用卷积多项式环作为Zq[X]/(Xn-1)。然而,(X-1)是Xn-1的一个微不足道的因子有时会产生问题。因此,我们考虑使用商多项式环的变体,如Zq[X]/(Xn + Xx-1 +…)+X + 1)和CVMA:循环向量乘法算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信