Characteristic Subspace Learning for Time Series Classification

Yuanduo He, Jialiang Pei, Xu Chu, Yasha Wang, Zhu Jin, Guangju Peng
{"title":"Characteristic Subspace Learning for Time Series Classification","authors":"Yuanduo He, Jialiang Pei, Xu Chu, Yasha Wang, Zhu Jin, Guangju Peng","doi":"10.1109/ICDM.2018.00128","DOIUrl":null,"url":null,"abstract":"This paper presents a novel time series classification algorithm. It exploits time-delay embedding to transform time series into a set of points as a distribution, and attempt to classify time series by classifying corresponding distributions. It proposes a novel geometrical feature, i.e. characteristic subspace, from embedding points for classification, and leverages class-weighted support vector machine (SVM) to learn for it. An efficient boosting strategy is also developed to enable a linear time training. The experiments show great potentials of this novel algorithm on accuracy, efficiency and interpretability.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel time series classification algorithm. It exploits time-delay embedding to transform time series into a set of points as a distribution, and attempt to classify time series by classifying corresponding distributions. It proposes a novel geometrical feature, i.e. characteristic subspace, from embedding points for classification, and leverages class-weighted support vector machine (SVM) to learn for it. An efficient boosting strategy is also developed to enable a linear time training. The experiments show great potentials of this novel algorithm on accuracy, efficiency and interpretability.
时间序列分类的特征子空间学习
提出了一种新的时间序列分类算法。它利用时延嵌入将时间序列转化为一组点作为分布,并尝试通过对相应分布进行分类来对时间序列进行分类。该方法从嵌入点中提出一种新的几何特征即特征子空间进行分类,并利用类加权支持向量机(SVM)对其进行学习。为实现线性时间训练,提出了一种有效的提升策略。实验表明,该算法在精度、效率和可解释性方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信