{"title":"Bankruptcy prediction for Japanese corporations using support vector machine, artificial neural network, and multivariate discriminant analysis","authors":"Matsumaru Masanobu, Kaneko Shoichi, Katagiri Hideki, Kawanaka Takaaki","doi":"10.46254/j.ieom.20190106","DOIUrl":null,"url":null,"abstract":"This study predicted the bankruptcy risk of companies listed in Japanese stock markets for the entire industry and individual industries using multiple discriminant analysis (MDA), artificial neural network (ANN), and support vector machine (SVM) and compared the methods to determine the best one. The financial statements of the companies listed in the Tokyo Stock Exchange in Japan were used as data. The data of 244 companies that went bankrupt between 1991 and 2015 were used. Additionally, the data of 64,708 companies that did not go bankrupt between 1991 and 2015 (24 years) were used. The data was acquired from the Nikkei NEEDS database. It was found from the results of empirical analysis that the SVM is more accurate than the other models in predicting the bankruptcy risk of companies. In the ANN analysis and MDA, bankruptcy prediction could be made accurately only for some individual industries. In contrast, the SVM could predict the bankruptcy risk of companies almost perfectly for either entire and individual industries. This bankruptcy prediction model can help customers, investors, and financiers prevent losses by focusing on the financial indicators before finalizing transactions.","PeriodicalId":268888,"journal":{"name":"International Journal of Industrial Engineering and Operations Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering and Operations Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46254/j.ieom.20190106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This study predicted the bankruptcy risk of companies listed in Japanese stock markets for the entire industry and individual industries using multiple discriminant analysis (MDA), artificial neural network (ANN), and support vector machine (SVM) and compared the methods to determine the best one. The financial statements of the companies listed in the Tokyo Stock Exchange in Japan were used as data. The data of 244 companies that went bankrupt between 1991 and 2015 were used. Additionally, the data of 64,708 companies that did not go bankrupt between 1991 and 2015 (24 years) were used. The data was acquired from the Nikkei NEEDS database. It was found from the results of empirical analysis that the SVM is more accurate than the other models in predicting the bankruptcy risk of companies. In the ANN analysis and MDA, bankruptcy prediction could be made accurately only for some individual industries. In contrast, the SVM could predict the bankruptcy risk of companies almost perfectly for either entire and individual industries. This bankruptcy prediction model can help customers, investors, and financiers prevent losses by focusing on the financial indicators before finalizing transactions.