Automatic execution of single-GPU computations across multiple GPUs

Javier Cabezas, L. Vilanova, Isaac Gelado, T. Jablin, N. Navarro, W. Hwu
{"title":"Automatic execution of single-GPU computations across multiple GPUs","authors":"Javier Cabezas, L. Vilanova, Isaac Gelado, T. Jablin, N. Navarro, W. Hwu","doi":"10.1145/2628071.2628109","DOIUrl":null,"url":null,"abstract":"We present AMGE, a programming framework and runtime system to decompose data and GPU kernels and execute them on multiple GPUs concurrently. AMGE exploits the remote memory access capability of recent GPUs to guarantee data accessibility regardless of its physical location, thus allowing AMGE to safely decompose and distribute arrays across GPU memories. AMGE also includes a compiler analysis to detect array access patterns in GPU kernels. The runtime uses this information to automatically choose the best computation and data distribution configuration. Through effective use of GPU caches, AMGE achieves good scalability in spite of the limited interconnect bandwidth between GPUs. Results show 1.95× and 3.73× execution speedups for 2 and 4 GPUs for a wide range of dense computations compared to the original versions on a single GPU.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2628109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present AMGE, a programming framework and runtime system to decompose data and GPU kernels and execute them on multiple GPUs concurrently. AMGE exploits the remote memory access capability of recent GPUs to guarantee data accessibility regardless of its physical location, thus allowing AMGE to safely decompose and distribute arrays across GPU memories. AMGE also includes a compiler analysis to detect array access patterns in GPU kernels. The runtime uses this information to automatically choose the best computation and data distribution configuration. Through effective use of GPU caches, AMGE achieves good scalability in spite of the limited interconnect bandwidth between GPUs. Results show 1.95× and 3.73× execution speedups for 2 and 4 GPUs for a wide range of dense computations compared to the original versions on a single GPU.
跨多个gpu自动执行单gpu计算
我们提出了一个编程框架和运行时系统AMGE,用于分解数据和GPU内核,并在多个GPU上并行执行。AMGE利用最新GPU的远程内存访问能力来保证数据的可访问性,而不管其物理位置如何,从而允许AMGE安全地分解和分布跨GPU内存的数组。AMGE还包括一个编译器分析来检测GPU内核中的数组访问模式。运行时使用这些信息自动选择最佳的计算和数据分布配置。AMGE通过有效利用GPU缓存,在GPU间互连带宽有限的情况下,实现了良好的可扩展性。结果显示,与单个GPU上的原始版本相比,2和4 GPU的执行速度提高了1.95倍和3.73倍,可以进行大范围的密集计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信