Proteome Profiling without Selection Bias

A. Barla, Bettina Irler, S. Merler, Giuseppe Jurman, S. Paoli, Cesare Furlanello
{"title":"Proteome Profiling without Selection Bias","authors":"A. Barla, Bettina Irler, S. Merler, Giuseppe Jurman, S. Paoli, Cesare Furlanello","doi":"10.1109/CBMS.2006.134","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method for predictive profiling of mass spectrometry data. The method integrates a spectra preprocessing pipeline with a complete validation setup aimed at identifying the discriminating peaks and at providing an unbiased estimate of the predictive classification error, based on SVM classifiers and on entropy-based RFE procedure. A particular emphasis is placed upon avoiding selection bias effects throughout all the analysis steps, from preprocessing to peak importance ranking","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a method for predictive profiling of mass spectrometry data. The method integrates a spectra preprocessing pipeline with a complete validation setup aimed at identifying the discriminating peaks and at providing an unbiased estimate of the predictive classification error, based on SVM classifiers and on entropy-based RFE procedure. A particular emphasis is placed upon avoiding selection bias effects throughout all the analysis steps, from preprocessing to peak importance ranking
无选择偏倚的蛋白质组分析
在本文中,我们提出了一种质谱数据预测分析的方法。该方法将光谱预处理管道与完整的验证设置集成在一起,旨在识别判别峰,并基于SVM分类器和基于熵的RFE过程提供预测分类误差的无偏估计。特别强调的是在所有分析步骤中避免选择偏差效应,从预处理到峰值重要性排序
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信