{"title":"Monte Carlo particle simulation of low-density fluid flow on MIMD supercomputers","authors":"S. Plimpton, T. Bartel","doi":"10.1109/SHPCC.1992.232643","DOIUrl":null,"url":null,"abstract":"Direct simulation Monte Carlo is a well-established technique for modeling low density fluid flows. The parallel implementation of a general simulation which allows for body-fitted grids, particle weighting, and a variety of surface and flow chemistry models is described. The authors compare its performance on a 1024-node nCUBE 2 to a serial version for the CRAY-YMP. Experiences with load-balancing the computation via graph-based heuristics and the newer spectral techniques are also discussed. This is a critical issue, since density fluctuations can create orders-of-magnitude differences in computational loads as the simulation progresses.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Direct simulation Monte Carlo is a well-established technique for modeling low density fluid flows. The parallel implementation of a general simulation which allows for body-fitted grids, particle weighting, and a variety of surface and flow chemistry models is described. The authors compare its performance on a 1024-node nCUBE 2 to a serial version for the CRAY-YMP. Experiences with load-balancing the computation via graph-based heuristics and the newer spectral techniques are also discussed. This is a critical issue, since density fluctuations can create orders-of-magnitude differences in computational loads as the simulation progresses.<>