J. Boyar, Lene M. Favrholdt, Shahin Kamali, Kim S. Larsen
{"title":"Online Interval Scheduling with Predictions","authors":"J. Boyar, Lene M. Favrholdt, Shahin Kamali, Kim S. Larsen","doi":"10.48550/arXiv.2302.13701","DOIUrl":null,"url":null,"abstract":"In online interval scheduling, the input is an online sequence of intervals, and the goal is to accept a maximum number of non-overlapping intervals. In the more general disjoint path allocation problem, the input is a sequence of requests, each involving a pair of vertices of a known graph, and the goal is to accept a maximum number of requests forming edge-disjoint paths between accepted pairs. These problems have been studied under extreme settings without information about the input or with error-free advice. We study an intermediate setting with a potentially erroneous prediction that specifies the set of intervals/requests forming the input sequence. For both problems, we provide tight upper and lower bounds on the competitive ratios of online algorithms as a function of the prediction error. For disjoint path allocation, our results rule out the possibility of obtaining a better competitive ratio than that of a simple algorithm that fully trusts predictions, whereas, for interval scheduling, we develop a superior algorithm. We also present asymptotically tight trade-offs between consistency (competitive ratio with error-free predictions) and robustness (competitive ratio with adversarial predictions) of interval scheduling algorithms. Finally, we provide experimental results on real-world scheduling workloads that confirm our theoretical analysis.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.13701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In online interval scheduling, the input is an online sequence of intervals, and the goal is to accept a maximum number of non-overlapping intervals. In the more general disjoint path allocation problem, the input is a sequence of requests, each involving a pair of vertices of a known graph, and the goal is to accept a maximum number of requests forming edge-disjoint paths between accepted pairs. These problems have been studied under extreme settings without information about the input or with error-free advice. We study an intermediate setting with a potentially erroneous prediction that specifies the set of intervals/requests forming the input sequence. For both problems, we provide tight upper and lower bounds on the competitive ratios of online algorithms as a function of the prediction error. For disjoint path allocation, our results rule out the possibility of obtaining a better competitive ratio than that of a simple algorithm that fully trusts predictions, whereas, for interval scheduling, we develop a superior algorithm. We also present asymptotically tight trade-offs between consistency (competitive ratio with error-free predictions) and robustness (competitive ratio with adversarial predictions) of interval scheduling algorithms. Finally, we provide experimental results on real-world scheduling workloads that confirm our theoretical analysis.