Classifying spatiotemporal object trajectories using unsupervised learning of basis function coefficients

S. Khalid, A. Naftel
{"title":"Classifying spatiotemporal object trajectories using unsupervised learning of basis function coefficients","authors":"S. Khalid, A. Naftel","doi":"10.1145/1099396.1099404","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel technique for clustering and classification of object trajectory-based video motion clips using spatiotemporal functional approximations. A Mahalanobis classifier is then used for the detection of anomalous trajectories. Motion trajectories are considered as time series and modeled using the leading Fourier coefficients obtained by a Discrete Fourier Transform. Trajectory clustering is then carried out in the Fourier coefficient feature space to discover patterns of similar object motions. The coefficients of the basis functions are used as input feature vectors to a Self-Organising Map which can learn similarities between object trajectories in an unsupervised manner. Encoding trajectories in this way leads to efficiency gains over existing approaches that use discrete point-based flow vectors to represent the whole trajectory. Experiments are performed on two different datasets -- synthetic and pedestrian object tracking - to demonstrate the effectiveness of our approach. Applications to motion data mining in video surveillance databases are envisaged.","PeriodicalId":196499,"journal":{"name":"Proceedings of the third ACM international workshop on Video surveillance & sensor networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the third ACM international workshop on Video surveillance & sensor networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1099396.1099404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

This paper proposes a novel technique for clustering and classification of object trajectory-based video motion clips using spatiotemporal functional approximations. A Mahalanobis classifier is then used for the detection of anomalous trajectories. Motion trajectories are considered as time series and modeled using the leading Fourier coefficients obtained by a Discrete Fourier Transform. Trajectory clustering is then carried out in the Fourier coefficient feature space to discover patterns of similar object motions. The coefficients of the basis functions are used as input feature vectors to a Self-Organising Map which can learn similarities between object trajectories in an unsupervised manner. Encoding trajectories in this way leads to efficiency gains over existing approaches that use discrete point-based flow vectors to represent the whole trajectory. Experiments are performed on two different datasets -- synthetic and pedestrian object tracking - to demonstrate the effectiveness of our approach. Applications to motion data mining in video surveillance databases are envisaged.
利用基函数系数的无监督学习对时空目标轨迹进行分类
本文提出了一种利用时空函数逼近对基于目标轨迹的视频运动片段进行聚类和分类的新技术。然后使用马氏分类器来检测异常轨迹。运动轨迹被认为是时间序列,并使用离散傅立叶变换得到的前导傅立叶系数来建模。然后在傅里叶系数特征空间中进行轨迹聚类,以发现相似物体运动的模式。将基函数的系数用作自组织映射的输入特征向量,该自组织映射可以以无监督的方式学习物体轨迹之间的相似性。与使用离散的基于点的流向量来表示整个轨迹的现有方法相比,以这种方式编码轨迹可以提高效率。实验在两个不同的数据集上进行——合成和行人目标跟踪——以证明我们的方法的有效性。展望了运动数据挖掘在视频监控数据库中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信