Refinement of noisy correspondence using feedback from 3D motion

Yong C. Kim, K. Price
{"title":"Refinement of noisy correspondence using feedback from 3D motion","authors":"Yong C. Kim, K. Price","doi":"10.1109/CVPR.1992.223245","DOIUrl":null,"url":null,"abstract":"In automated feature-based motion analysis of multiple frames, correspondence data are usually noisy and fragmented. A technique that gradually refines the initial noisy correspondence data and links fragments of a single trajectory using feedback from 3D motion estimation is presented. First, 3D motion parameters are estimated using the initial correspondence data. Then, each noisy trajectory is partitioned into subsets of points, each of which conforms to the estimated motion. The best set is used as the input to the next motion estimation. This process is repeated, and the gaps in the refined correspondence data are filled by guidance from the predicted motion. Test results for a standard real image sequence are presented.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In automated feature-based motion analysis of multiple frames, correspondence data are usually noisy and fragmented. A technique that gradually refines the initial noisy correspondence data and links fragments of a single trajectory using feedback from 3D motion estimation is presented. First, 3D motion parameters are estimated using the initial correspondence data. Then, each noisy trajectory is partitioned into subsets of points, each of which conforms to the estimated motion. The best set is used as the input to the next motion estimation. This process is repeated, and the gaps in the refined correspondence data are filled by guidance from the predicted motion. Test results for a standard real image sequence are presented.<>
利用三维运动反馈改进噪声对应
在基于特征的多帧自动运动分析中,对应数据通常是嘈杂和碎片化的。提出了一种利用三维运动估计反馈逐步细化初始噪声对应数据并链接单个轨迹碎片的技术。首先,利用初始对应数据估计三维运动参数;然后,将每个噪声轨迹划分为点子集,每个点子集都符合估计的运动。最好的集合被用作下一个运动估计的输入。这个过程是重复的,并且精确对应数据中的空白由预测运动的引导填充。给出了一个标准真实图像序列的测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信