Choosing the Right Spatial Weighting Matrix in a Quantile Regression Model

ISRN Economics Pub Date : 2013-01-28 DOI:10.1155/2013/158240
Phillip Kostov
{"title":"Choosing the Right Spatial Weighting Matrix in a Quantile Regression Model","authors":"Phillip Kostov","doi":"10.1155/2013/158240","DOIUrl":null,"url":null,"abstract":"This paper proposes computationally tractable methods for selecting the appropriate spatial weighting matrix in the context of a spatial quantile regression model. This selection is a notoriously difficult problem even in linear spatial models and is even more difficult in a quantile regression setup. The proposal is illustrated by an empirical example and manages to produce tractable models. One important feature of the proposed methodology is that by allowing different degrees and forms of spatial dependence across quantiles it further relaxes the usual quantile restriction attributable to the linear quantile regression. In this way we can obtain a more robust, with regard to potential functional misspecification, model, but nevertheless preserve the parametric rate of convergence and the established inferential apparatus associated with the linear quantile regression approach.","PeriodicalId":129341,"journal":{"name":"ISRN Economics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/158240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes computationally tractable methods for selecting the appropriate spatial weighting matrix in the context of a spatial quantile regression model. This selection is a notoriously difficult problem even in linear spatial models and is even more difficult in a quantile regression setup. The proposal is illustrated by an empirical example and manages to produce tractable models. One important feature of the proposed methodology is that by allowing different degrees and forms of spatial dependence across quantiles it further relaxes the usual quantile restriction attributable to the linear quantile regression. In this way we can obtain a more robust, with regard to potential functional misspecification, model, but nevertheless preserve the parametric rate of convergence and the established inferential apparatus associated with the linear quantile regression approach.
分位数回归模型中空间权重矩阵的选择
本文提出了在空间分位数回归模型中选择合适的空间权重矩阵的计算方法。即使在线性空间模型中,这种选择也是一个非常困难的问题,在分位数回归设置中更是如此。该建议通过一个经验例子加以说明,并设法产生易于处理的模型。所提出的方法的一个重要特征是,通过允许不同程度和形式的空间依赖,它进一步放宽了通常归因于线性分位数回归的分位数限制。通过这种方式,我们可以获得一个更稳健的模型,考虑到潜在的功能错误,但仍然保留参数收敛率和与线性分位数回归方法相关的已建立的推理装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信