Clustering of Functional Data by Band Depth

A. M. Kwon, Ouyang Ming
{"title":"Clustering of Functional Data by Band Depth","authors":"A. M. Kwon, Ouyang Ming","doi":"10.4108/EAI.3-12-2015.2262364","DOIUrl":null,"url":null,"abstract":"The notion of data depth is a generalization of order statistics, ranks, and medians in one-dimensional space to multi-dimensional space. Band depth is a depth measure of functional data. A few articles in the literature emerged in recent years that used band depth to analyze functional data. The present work is the first attempt to develop a non-parametric clustering method based on band depth. Three definitions of band depth are compared, a few combinations of clustering strategies are employed, and band depth clustering is applied to DNA microarray data of yeast cell cycle. The results show that band depth clustering is efficient and robust.","PeriodicalId":415083,"journal":{"name":"International Conference on Bio-inspired Information and Communications Technologies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Bio-inspired Information and Communications Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.3-12-2015.2262364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The notion of data depth is a generalization of order statistics, ranks, and medians in one-dimensional space to multi-dimensional space. Band depth is a depth measure of functional data. A few articles in the literature emerged in recent years that used band depth to analyze functional data. The present work is the first attempt to develop a non-parametric clustering method based on band depth. Three definitions of band depth are compared, a few combinations of clustering strategies are employed, and band depth clustering is applied to DNA microarray data of yeast cell cycle. The results show that band depth clustering is efficient and robust.
基于频带深度的功能数据聚类
数据深度的概念是将一维空间中的顺序统计量、秩和中位数推广到多维空间。波段深度是功能数据的深度度量。近年来,文献中出现了一些使用波段深度分析功能数据的文章。本文首次尝试了基于频带深度的非参数聚类方法。比较了三种波段深度的定义,采用了几种不同的聚类策略组合,并将波段深度聚类应用于酵母细胞周期的DNA芯片数据。结果表明,该算法具有较好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信