Depth estimation from a single 2D image

Naoual El-Djouher Mebtouche, Abdelkrim Boumahdi, N. Baha
{"title":"Depth estimation from a single 2D image","authors":"Naoual El-Djouher Mebtouche, Abdelkrim Boumahdi, N. Baha","doi":"10.1109/ISPS.2018.8379021","DOIUrl":null,"url":null,"abstract":"With the growth of the 3D market, the demand for providing 3D content from already existing 2D content has increased. However, the availability of 3D content is very limited, since estimating 3D structure from a monocular image is a challenging task. In this paper, we propose a new nonparametric learning-based method for 2D-to-3D conversion from a monocular image. Our method follows three stages. First, we select K similar images to the input image from an RGBD database. Then, we infer the depth map using the K selected images and their corresponding depths maps. Finally, we refine the estimated depth map. Experiments on dataset were conducted and comparative evaluations with the state of the art are presented.","PeriodicalId":294761,"journal":{"name":"2018 International Symposium on Programming and Systems (ISPS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Programming and Systems (ISPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPS.2018.8379021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the growth of the 3D market, the demand for providing 3D content from already existing 2D content has increased. However, the availability of 3D content is very limited, since estimating 3D structure from a monocular image is a challenging task. In this paper, we propose a new nonparametric learning-based method for 2D-to-3D conversion from a monocular image. Our method follows three stages. First, we select K similar images to the input image from an RGBD database. Then, we infer the depth map using the K selected images and their corresponding depths maps. Finally, we refine the estimated depth map. Experiments on dataset were conducted and comparative evaluations with the state of the art are presented.
从单个2D图像进行深度估计
随着3D市场的增长,从现有的2D内容中提供3D内容的需求也在增加。然而,3D内容的可用性非常有限,因为从单眼图像估计3D结构是一项具有挑战性的任务。在本文中,我们提出了一种新的基于非参数学习的方法,用于单眼图像的二维到三维转换。我们的方法分为三个阶段。首先,我们从RGBD数据库中选择K张与输入图像相似的图像。然后,我们使用K个选定的图像及其相应的深度图来推断深度图。最后,对估计深度图进行细化。在数据集上进行了实验,并与目前的技术水平进行了比较评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信