Neural Graph Learning: Training Neural Networks Using Graphs

T. Bui, Sujith Ravi, Vivek Ramavajjala
{"title":"Neural Graph Learning: Training Neural Networks Using Graphs","authors":"T. Bui, Sujith Ravi, Vivek Ramavajjala","doi":"10.1145/3159652.3159731","DOIUrl":null,"url":null,"abstract":"Label propagation is a powerful and flexible semi-supervised learning technique on graphs. Neural networks, on the other hand, have proven track records in many supervised learning tasks. In this work, we propose a training framework with a graph-regularised objective, namely Neural Graph Machines, that can combine the power of neural networks and label propagation. This work generalises previous literature on graph-augmented training of neural networks, enabling it to be applied to multiple neural architectures (Feed-forward NNs, CNNs and LSTM RNNs) and a wide range of graphs. The new objective allows the neural networks to harness both labeled and unlabeled data by: (a)~allowing the network to train using labeled data as in the supervised setting, (b)~biasing the network to learn similar hidden representations for neighboring nodes on a graph, in the same vein as label propagation. Such architectures with the proposed objective can be trained efficiently using stochastic gradient descent and scaled to large graphs, with a runtime that is linear in the number of edges. The proposed joint training approach convincingly outperforms many existing methods on a wide range of tasks (multi-label classification on social graphs, news categorization, document classification and semantic intent classification), with multiple forms of graph inputs (including graphs with and without node-level features) and using different types of neural networks.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3159731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Label propagation is a powerful and flexible semi-supervised learning technique on graphs. Neural networks, on the other hand, have proven track records in many supervised learning tasks. In this work, we propose a training framework with a graph-regularised objective, namely Neural Graph Machines, that can combine the power of neural networks and label propagation. This work generalises previous literature on graph-augmented training of neural networks, enabling it to be applied to multiple neural architectures (Feed-forward NNs, CNNs and LSTM RNNs) and a wide range of graphs. The new objective allows the neural networks to harness both labeled and unlabeled data by: (a)~allowing the network to train using labeled data as in the supervised setting, (b)~biasing the network to learn similar hidden representations for neighboring nodes on a graph, in the same vein as label propagation. Such architectures with the proposed objective can be trained efficiently using stochastic gradient descent and scaled to large graphs, with a runtime that is linear in the number of edges. The proposed joint training approach convincingly outperforms many existing methods on a wide range of tasks (multi-label classification on social graphs, news categorization, document classification and semantic intent classification), with multiple forms of graph inputs (including graphs with and without node-level features) and using different types of neural networks.
神经图学习:使用图训练神经网络
标签传播是一种强大而灵活的半监督学习技术。另一方面,神经网络在许多监督学习任务中都有良好的记录。在这项工作中,我们提出了一个具有图正则化目标的训练框架,即神经图机,它可以结合神经网络和标签传播的力量。这项工作概括了以前关于神经网络图增强训练的文献,使其能够应用于多种神经体系结构(前馈神经网络,cnn和LSTM rnn)和广泛的图。新的目标允许神经网络利用标记和未标记的数据:(a)允许网络像在监督设置中一样使用标记数据进行训练,(b)偏向网络,以与标签传播相同的方式学习图上相邻节点的类似隐藏表示。这种具有所提出目标的架构可以使用随机梯度下降有效地训练并缩放到大型图,其运行时在边缘数量上是线性的。提出的联合训练方法在广泛的任务(社交图的多标签分类、新闻分类、文档分类和语义意图分类)、多种形式的图输入(包括具有和不具有节点级特征的图)和使用不同类型的神经网络上令人信服地优于许多现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信