{"title":"Neural Graph Learning: Training Neural Networks Using Graphs","authors":"T. Bui, Sujith Ravi, Vivek Ramavajjala","doi":"10.1145/3159652.3159731","DOIUrl":null,"url":null,"abstract":"Label propagation is a powerful and flexible semi-supervised learning technique on graphs. Neural networks, on the other hand, have proven track records in many supervised learning tasks. In this work, we propose a training framework with a graph-regularised objective, namely Neural Graph Machines, that can combine the power of neural networks and label propagation. This work generalises previous literature on graph-augmented training of neural networks, enabling it to be applied to multiple neural architectures (Feed-forward NNs, CNNs and LSTM RNNs) and a wide range of graphs. The new objective allows the neural networks to harness both labeled and unlabeled data by: (a)~allowing the network to train using labeled data as in the supervised setting, (b)~biasing the network to learn similar hidden representations for neighboring nodes on a graph, in the same vein as label propagation. Such architectures with the proposed objective can be trained efficiently using stochastic gradient descent and scaled to large graphs, with a runtime that is linear in the number of edges. The proposed joint training approach convincingly outperforms many existing methods on a wide range of tasks (multi-label classification on social graphs, news categorization, document classification and semantic intent classification), with multiple forms of graph inputs (including graphs with and without node-level features) and using different types of neural networks.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3159731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71
Abstract
Label propagation is a powerful and flexible semi-supervised learning technique on graphs. Neural networks, on the other hand, have proven track records in many supervised learning tasks. In this work, we propose a training framework with a graph-regularised objective, namely Neural Graph Machines, that can combine the power of neural networks and label propagation. This work generalises previous literature on graph-augmented training of neural networks, enabling it to be applied to multiple neural architectures (Feed-forward NNs, CNNs and LSTM RNNs) and a wide range of graphs. The new objective allows the neural networks to harness both labeled and unlabeled data by: (a)~allowing the network to train using labeled data as in the supervised setting, (b)~biasing the network to learn similar hidden representations for neighboring nodes on a graph, in the same vein as label propagation. Such architectures with the proposed objective can be trained efficiently using stochastic gradient descent and scaled to large graphs, with a runtime that is linear in the number of edges. The proposed joint training approach convincingly outperforms many existing methods on a wide range of tasks (multi-label classification on social graphs, news categorization, document classification and semantic intent classification), with multiple forms of graph inputs (including graphs with and without node-level features) and using different types of neural networks.