A comparison of Finite State Classifier and Mahalanobis-Taguchi System for multivariate pattern recognition in skin cancer detection

E. Cudney, S. Corns
{"title":"A comparison of Finite State Classifier and Mahalanobis-Taguchi System for multivariate pattern recognition in skin cancer detection","authors":"E. Cudney, S. Corns","doi":"10.1109/CIBCB.2011.5948469","DOIUrl":null,"url":null,"abstract":"This project presents two methods for image classification for the detection of malignant melanoma: the Mahalanobis-Taguchi System and Finite State Classifiers. The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases, while Finite State Classifiers are a state based machine learning technique. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a Finite State Classifier to discriminate using small data sets. We examine the discriminant ability as a function of data set size using publicly available skin lesion image data. While analysis of the data shows a high degree of correlation, the Mahalanobis-Taguchi System performed poorly when trying to discriminate between Malignant Melanoma and benign lesions. Alternately, the Finite State Classifiers developed using evolutionary computation obtained over 85% correct classification of the malignant and benign lesions using the image data sets.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This project presents two methods for image classification for the detection of malignant melanoma: the Mahalanobis-Taguchi System and Finite State Classifiers. The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases, while Finite State Classifiers are a state based machine learning technique. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a Finite State Classifier to discriminate using small data sets. We examine the discriminant ability as a function of data set size using publicly available skin lesion image data. While analysis of the data shows a high degree of correlation, the Mahalanobis-Taguchi System performed poorly when trying to discriminate between Malignant Melanoma and benign lesions. Alternately, the Finite State Classifiers developed using evolutionary computation obtained over 85% correct classification of the malignant and benign lesions using the image data sets.
有限状态分类器与Mahalanobis-Taguchi系统在皮肤癌多变量模式识别中的比较
本项目提出了两种用于检测恶性黑色素瘤的图像分类方法:Mahalanobis-Taguchi系统和有限状态分类器。Mahalanobis-Taguchi系统是一种用于分析多元情况下模式的诊断和预测方法,而有限状态分类器是一种基于状态的机器学习技术。本研究的目的是比较Mahalanobis-Taguchi系统和有限状态分类器使用小数据集进行区分的能力。我们使用公开可用的皮肤病变图像数据来检验作为数据集大小函数的判别能力。虽然数据分析显示高度相关,但Mahalanobis-Taguchi系统在试图区分恶性黑色素瘤和良性病变时表现不佳。另外,使用进化计算开发的有限状态分类器使用图像数据集对恶性和良性病变进行了超过85%的正确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信