Improving DBSCAN for Indoor Positioning Using Wi-Fi Radio Maps in Wearable and IoT Devices

Darwin Quezada-Gaibor, Lucie Klus, J. Torres-Sospedra, E. Lohan, J. Nurmi, J. Huerta
{"title":"Improving DBSCAN for Indoor Positioning Using Wi-Fi Radio Maps in Wearable and IoT Devices","authors":"Darwin Quezada-Gaibor, Lucie Klus, J. Torres-Sospedra, E. Lohan, J. Nurmi, J. Huerta","doi":"10.1109/ICUMT51630.2020.9222411","DOIUrl":null,"url":null,"abstract":"IoT devices and wearables may rely on Wi-Fi finger-printing to estimate the position indoors. The limited resources of these devices make it necessary to provide adequate methods to reduce the operational computational load without degrading the positioning error. Thus, the aim of this article is to improve the positioning error and reduce the dimensionality of the radio map by using an enhanced DBSCAN. Moreover, we provide an additional analysis of combining DBSCAN + PCA analysis for further dimensionality reduction. Thereby, we implement a postprocessing method based on the correlation coefficient to join \"noisy\" samples to the formed clusters with Density-based Spatial Clustering of Applications with Noise (DBSCAN). As a result, the positioning error was reduced by 10% with respect to the plain DBSCAN, and the radio map dimensionality was reduced in both dimensions, samples and Access Points (APs).","PeriodicalId":170847,"journal":{"name":"2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUMT51630.2020.9222411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

IoT devices and wearables may rely on Wi-Fi finger-printing to estimate the position indoors. The limited resources of these devices make it necessary to provide adequate methods to reduce the operational computational load without degrading the positioning error. Thus, the aim of this article is to improve the positioning error and reduce the dimensionality of the radio map by using an enhanced DBSCAN. Moreover, we provide an additional analysis of combining DBSCAN + PCA analysis for further dimensionality reduction. Thereby, we implement a postprocessing method based on the correlation coefficient to join "noisy" samples to the formed clusters with Density-based Spatial Clustering of Applications with Noise (DBSCAN). As a result, the positioning error was reduced by 10% with respect to the plain DBSCAN, and the radio map dimensionality was reduced in both dimensions, samples and Access Points (APs).
在可穿戴设备和物联网设备中使用Wi-Fi无线地图改进DBSCAN室内定位
物联网设备和可穿戴设备可能依赖Wi-Fi指纹来估计室内位置。这些设备的有限资源使得有必要提供足够的方法来减少操作计算负荷而不降低定位误差。因此,本文的目的是通过使用增强的DBSCAN来改善定位误差并降低无线电地图的维数。此外,我们还提供了DBSCAN + PCA分析相结合的额外分析,以进一步降维。因此,我们实现了一种基于相关系数的后处理方法,通过基于密度的空间聚类(DBSCAN)将“噪声”样本加入到形成的聚类中。结果,相对于普通DBSCAN,定位误差降低了10%,并且在样本和接入点(ap)两个维度上都降低了无线电地图的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信