A survey on predicting workloads and optimizing QoS in the cloud computing

O. Aloufi, K. Djemame, Faisal Saeed, Fahad Ghaban
{"title":"A survey on predicting workloads and optimizing QoS in the cloud computing","authors":"O. Aloufi, K. Djemame, Faisal Saeed, Fahad Ghaban","doi":"10.1109/ICOTEN52080.2021.9493436","DOIUrl":null,"url":null,"abstract":"This paper presents the concept and characteristics of cloud computing, and it addresses how cloud computing delivers quality of service (QoS) to the end-user. Next, it discusses how to schedule one’s workload in the infrastructure using technologies that have recently emerged such as Machine Learning (ML). That is followed by an overview of how ML can be used for resource management. Then, this paper aims to outline the benefits of using ML to schedule upcoming demands to achieve QoS and conserve energy. In addition, we reviewed the research related to ML methods for predicting workloads in cloud computing. It also provides information on the approaches to elasticity, while another section discusses the methods of prediction used in previous studies.","PeriodicalId":308802,"journal":{"name":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOTEN52080.2021.9493436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the concept and characteristics of cloud computing, and it addresses how cloud computing delivers quality of service (QoS) to the end-user. Next, it discusses how to schedule one’s workload in the infrastructure using technologies that have recently emerged such as Machine Learning (ML). That is followed by an overview of how ML can be used for resource management. Then, this paper aims to outline the benefits of using ML to schedule upcoming demands to achieve QoS and conserve energy. In addition, we reviewed the research related to ML methods for predicting workloads in cloud computing. It also provides information on the approaches to elasticity, while another section discusses the methods of prediction used in previous studies.
云计算中工作负载预测与QoS优化研究综述
本文介绍了云计算的概念和特征,并讨论了云计算如何向最终用户提供服务质量(QoS)。接下来,它讨论了如何使用最近出现的技术(如机器学习(ML))在基础设施中调度工作负载。然后概述如何将ML用于资源管理。然后,本文旨在概述使用ML来调度即将到来的需求以实现QoS和节约能源的好处。此外,我们回顾了与预测云计算工作负载的ML方法相关的研究。它还提供了关于弹性方法的信息,而另一部分讨论了以前研究中使用的预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信