HYPERSPECTRAL IMAGE ANALYSIS USING A CUSTOM SPECTRAL CONVOLUTIONAL NEURAL NETWORK

Mayar A. Shafaey, Maryam ElBery, M. Salem, Hala Moushier, El-Sayed A. El-Dahshan, M. Tolba
{"title":"HYPERSPECTRAL IMAGE ANALYSIS USING A CUSTOM SPECTRAL CONVOLUTIONAL NEURAL NETWORK","authors":"Mayar A. Shafaey, Maryam ElBery, M. Salem, Hala Moushier, El-Sayed A. El-Dahshan, M. Tolba","doi":"10.21608/ijicis.2022.147175.1198","DOIUrl":null,"url":null,"abstract":": In recent time, the most applied classification method for hyperspectral images is based on the supervised deep learning approach. The hyperspectral images require special handling while it consists of hundreds of bands / channels. In this article, the experiments are conducted using one of the widespread deep learning models, Convolutional Neural Networks (CNNs), specifically, Csutom Spectral CNN architecture (CSCNN). The introduced network is based on the data reduction and data normalization. It firstly ommits the unnecessary data channels and retains the meaningful ones. Then, it passes the remaining data through the CNN layers (convolutional, rectified linear unit, fully connected, dropout,…etc) until reaches the classification layer. The experiments are applied on four benchmarcks [hyperspectral datasets], namely, Salinas-A, Kenndy Space Center (KSC), Indian Pines (IP), and Pavia University (Pavia-U). The proposed model achieved an overall accuracy more than 99.50 %. In last, a comparison versus the state of the art is also introduced.","PeriodicalId":244591,"journal":{"name":"International Journal of Intelligent Computing and Information Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijicis.2022.147175.1198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: In recent time, the most applied classification method for hyperspectral images is based on the supervised deep learning approach. The hyperspectral images require special handling while it consists of hundreds of bands / channels. In this article, the experiments are conducted using one of the widespread deep learning models, Convolutional Neural Networks (CNNs), specifically, Csutom Spectral CNN architecture (CSCNN). The introduced network is based on the data reduction and data normalization. It firstly ommits the unnecessary data channels and retains the meaningful ones. Then, it passes the remaining data through the CNN layers (convolutional, rectified linear unit, fully connected, dropout,…etc) until reaches the classification layer. The experiments are applied on four benchmarcks [hyperspectral datasets], namely, Salinas-A, Kenndy Space Center (KSC), Indian Pines (IP), and Pavia University (Pavia-U). The proposed model achieved an overall accuracy more than 99.50 %. In last, a comparison versus the state of the art is also introduced.
高光谱图像分析使用自定义的光谱卷积神经网络
近年来,应用最多的高光谱图像分类方法是基于监督深度学习的方法。高光谱图像由数百个波段/通道组成,需要特殊处理。在本文中,实验使用了一种广泛的深度学习模型,卷积神经网络(CNN),具体来说,是Csutom谱CNN架构(CSCNN)。该网络是基于数据约简和数据归一化的。它首先去掉不必要的数据通道,保留有意义的数据通道。然后,它将剩余的数据通过CNN层(卷积、整流线性单元、完全连接、dropout等)传递,直到到达分类层。实验应用于四个基准[高光谱数据集],即Salinas-A, kennedy Space Center (KSC), Indian Pines (IP)和Pavia University (Pavia- u)。该模型的总体准确率达到99.50%以上。最后,还介绍了与当前技术水平的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信