Artificial Neural Network Pada Industri Non Migas Sebagai Langkah Menuju Revolusi Industri 4.0

Iin Parlina, Anjar Wanto, Agus Perdana Windarto
{"title":"Artificial Neural Network Pada Industri Non Migas Sebagai Langkah Menuju Revolusi Industri 4.0","authors":"Iin Parlina, Anjar Wanto, Agus Perdana Windarto","doi":"10.30743/INFOTEKJAR.V4I1.1682","DOIUrl":null,"url":null,"abstract":"The research conducted aims to make predictions with artificial neural metwork (backpopagation) and sensitivity analysis in the non-oil processing industry for the value of industrial exports. Data was obtained from the Badan Pusat Statistik (BPS) in collaboration with the Ministry of Industry of the Republic of Indonesia in the last 7 years (2011-2017). The process is carried out by dividing the data into 2 parts (training and testing) to obtain the best architectural model. The data processing uses the help of Matlab 6.0 software. Model selection is done by try and try to get the best architectural model. In this study using 7 architectural models (15-2-1; 15-5-1; 15-10-1; 15-15-1; 15-2-5-1; 15-5-10-1 and 15- 10-5-1) who have been trained and tested. By using the help of Matlab 6.0 software, the best architectural model is obtained 15-2-1 with an accuracy rate of 93%, epoch training = 189,881, MSE testing = 0.001167108 and MSE training = 0,000999622. The best architecture will be continued to predict the non-oil industry based on the most dominant export value using sensitivity analysis. From the architectural model a prediction of 5 out of 15 non-oil and gas industries contributes: Food & Beverage Industry, Textile & Apparel Industry, Basic Metal Industry, Rubber Industry, Rubber and Plastic Goods and Metal Goods Industry, Not Machines and Equipment , Computers, Electronics and Optics.","PeriodicalId":236794,"journal":{"name":"InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30743/INFOTEKJAR.V4I1.1682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The research conducted aims to make predictions with artificial neural metwork (backpopagation) and sensitivity analysis in the non-oil processing industry for the value of industrial exports. Data was obtained from the Badan Pusat Statistik (BPS) in collaboration with the Ministry of Industry of the Republic of Indonesia in the last 7 years (2011-2017). The process is carried out by dividing the data into 2 parts (training and testing) to obtain the best architectural model. The data processing uses the help of Matlab 6.0 software. Model selection is done by try and try to get the best architectural model. In this study using 7 architectural models (15-2-1; 15-5-1; 15-10-1; 15-15-1; 15-2-5-1; 15-5-10-1 and 15- 10-5-1) who have been trained and tested. By using the help of Matlab 6.0 software, the best architectural model is obtained 15-2-1 with an accuracy rate of 93%, epoch training = 189,881, MSE testing = 0.001167108 and MSE training = 0,000999622. The best architecture will be continued to predict the non-oil industry based on the most dominant export value using sensitivity analysis. From the architectural model a prediction of 5 out of 15 non-oil and gas industries contributes: Food & Beverage Industry, Textile & Apparel Industry, Basic Metal Industry, Rubber Industry, Rubber and Plastic Goods and Metal Goods Industry, Not Machines and Equipment , Computers, Electronics and Optics.
非米加斯工业的人工神经网络是迈向工业革命4.0的一步
本研究的目的是利用人工神经网络(backpopagation)和敏感性分析对非石油加工业的工业出口价值进行预测。数据是在过去7年(2011-2017年)期间与印度尼西亚共和国工业部合作从巴丹普萨特统计局(BPS)获得的。该过程通过将数据分为两部分(训练和测试)来执行,以获得最佳的体系结构模型。数据处理使用Matlab 6.0软件。模型选择是通过不断尝试得到最好的体系结构模型来完成的。本研究采用7个建筑模型(15-2-1;15-5-1;15-10-1;15-15-1;15-2-5-1;15-5-10-1和15- 10-5-1),他们经过培训和测试。利用Matlab 6.0软件,得到了最佳的体系结构模型15-2-1,准确率为93%,epoch训练= 189,881,MSE测试= 0.001167108,MSE训练= 0,000999622。利用敏感性分析,以最主要的出口价值为基础,继续预测非石油行业的最佳结构。从架构模型预测15个非石油和天然气行业中的5个:食品和饮料工业,纺织和服装工业,基础金属工业,橡胶工业,橡胶和塑料制品和金属制品工业,不包括机器和设备,计算机,电子和光学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信