Multi-Dimension Aware Back Projection Network For Scene Text Detection

Yizhan Zhao, Sumei Li, Yongli Chang
{"title":"Multi-Dimension Aware Back Projection Network For Scene Text Detection","authors":"Yizhan Zhao, Sumei Li, Yongli Chang","doi":"10.1109/VCIP53242.2021.9675323","DOIUrl":null,"url":null,"abstract":"Recently, scene text detection based on deep learning has progressed substantially. Nevertheless, most previous models with FPN are limited by the drawback of sample interpolation algorithms, which fail to generate high-quality up-sampled features. Accordingly, we propose an end-to-end trainable text detector to alleviate the above dilemma. Specifically, a Back Projection Enhanced Up-sampling (BPEU) block is proposed to alleviate the drawback of sample interpolation algorithms. It significantly enhances the quality of up-sampled features by employing back projection and detail compensation. Further-more, a Multi-Dimensional Attention (MDA) block is devised to learn different knowledge from spatial and channel dimensions, which intelligently selects features to generate more discriminative representations. Experimental results on three benchmarks, ICDAR2015, ICDAR2017- MLT and MSRA-TD500, demonstrate the effectiveness of our method.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, scene text detection based on deep learning has progressed substantially. Nevertheless, most previous models with FPN are limited by the drawback of sample interpolation algorithms, which fail to generate high-quality up-sampled features. Accordingly, we propose an end-to-end trainable text detector to alleviate the above dilemma. Specifically, a Back Projection Enhanced Up-sampling (BPEU) block is proposed to alleviate the drawback of sample interpolation algorithms. It significantly enhances the quality of up-sampled features by employing back projection and detail compensation. Further-more, a Multi-Dimensional Attention (MDA) block is devised to learn different knowledge from spatial and channel dimensions, which intelligently selects features to generate more discriminative representations. Experimental results on three benchmarks, ICDAR2015, ICDAR2017- MLT and MSRA-TD500, demonstrate the effectiveness of our method.
用于场景文本检测的多维感知反向投影网络
近年来,基于深度学习的场景文本检测技术取得了长足的进展。然而,大多数先前的FPN模型都受到样本插值算法的缺点的限制,无法生成高质量的上采样特征。因此,我们提出了一个端到端可训练的文本检测器来缓解上述困境。针对样本插值算法的不足,提出了一种反向投影增强上采样(BPEU)算法。通过反投影和细节补偿,显著提高了上采样特征的质量。在此基础上,设计了多维注意块(Multi-Dimensional Attention block, MDA),从空间维度和通道维度学习不同的知识,智能选择特征,生成更具判别性的表征。在ICDAR2015、ICDAR2017- MLT和MSRA-TD500三个基准上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信