Multi-level Random Sample Consensus Method for Improving Structured Light Vision Systems

Zhankun Luo, Yaan Zhang, Li Tan
{"title":"Multi-level Random Sample Consensus Method for Improving Structured Light Vision Systems","authors":"Zhankun Luo, Yaan Zhang, Li Tan","doi":"10.1109/UEMCON51285.2020.9298161","DOIUrl":null,"url":null,"abstract":"The paper proposes a structured light vision system equipped with multi-cameras and multi-laser emitters for object height measurement or 3D reconstruction. The proposed method offers a better accuracy performance over a single camera system. To tackle the intersections produced by laser emitters in the projected image plane, we propose a multi-level random sample consensus (MLRANSAC) algorithm to separate the intersection points instead of using the traditional methods such as time division and color division techniques. Our experiments demonstrate that the MLRANSAC algorithm can perform effectively.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a structured light vision system equipped with multi-cameras and multi-laser emitters for object height measurement or 3D reconstruction. The proposed method offers a better accuracy performance over a single camera system. To tackle the intersections produced by laser emitters in the projected image plane, we propose a multi-level random sample consensus (MLRANSAC) algorithm to separate the intersection points instead of using the traditional methods such as time division and color division techniques. Our experiments demonstrate that the MLRANSAC algorithm can perform effectively.
改进结构光视觉系统的多级随机样本一致性方法
本文提出了一种由多摄像机和多激光发射器组成的用于物体高度测量或三维重建的结构光视觉系统。该方法比单相机系统具有更好的精度性能。为了解决激光发射器在投影图像平面上产生的相交点问题,我们提出了一种多层随机样本一致性(MLRANSAC)算法来分离相交点,而不是使用传统的时间分割和颜色分割技术。实验结果表明,MLRANSAC算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信