Learning Multiple Primary Transmit Power Levels for Smart Spectrum Sharing

Rui Zhang, Peng Cheng, Zhuo Chen, Yonghui Li, B. Vucetic
{"title":"Learning Multiple Primary Transmit Power Levels for Smart Spectrum Sharing","authors":"Rui Zhang, Peng Cheng, Zhuo Chen, Yonghui Li, B. Vucetic","doi":"10.1109/ICC.2019.8761201","DOIUrl":null,"url":null,"abstract":"Multi-parameter cognition in a cognitive radio network provides a potential avenue to more efficient spectrum usage. In this paper, we propose a two-stage spectrum sharing strategy, where the primary user operates with multiple transmit power levels. Different from the conventional approaches, our method does not require any prior knowledge of the primary transmitter (PT) power characteristics. In the first stage, we use a conditionally conjugate Dirichlet process Gaussian mixture model to capture the multi-level power characteristics inherent in the PT signals, and design a Bayesian inference method to infer the model parameters. In the second stage, we propose a secondary transmitter (ST) prediction-transmission method based on reinforcement learning, which adapts to the PT power variation and strike an excellent tradeoff between the secondary network throughput and the interference to the primary network. The simulation results show the effectiveness of the proposed strategy.","PeriodicalId":402732,"journal":{"name":"ICC 2019 - 2019 IEEE International Conference on Communications (ICC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2019 - 2019 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2019.8761201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-parameter cognition in a cognitive radio network provides a potential avenue to more efficient spectrum usage. In this paper, we propose a two-stage spectrum sharing strategy, where the primary user operates with multiple transmit power levels. Different from the conventional approaches, our method does not require any prior knowledge of the primary transmitter (PT) power characteristics. In the first stage, we use a conditionally conjugate Dirichlet process Gaussian mixture model to capture the multi-level power characteristics inherent in the PT signals, and design a Bayesian inference method to infer the model parameters. In the second stage, we propose a secondary transmitter (ST) prediction-transmission method based on reinforcement learning, which adapts to the PT power variation and strike an excellent tradeoff between the secondary network throughput and the interference to the primary network. The simulation results show the effectiveness of the proposed strategy.
基于智能频谱共享的多主发射功率学习
认知无线网络中的多参数认知为更有效地利用频谱提供了一条潜在的途径。在本文中,我们提出了一种两阶段频谱共享策略,其中主用户具有多个发射功率水平。与传统方法不同,我们的方法不需要对主发射机(PT)功率特性有任何先验知识。在第一阶段,我们使用条件共轭狄利克雷过程高斯混合模型来捕获PT信号中固有的多级功率特性,并设计贝叶斯推理方法来推断模型参数。在第二阶段,我们提出了一种基于强化学习的二次发射机(ST)预测传输方法,该方法适应了PT功率的变化,并在二次网络吞吐量和对主网络的干扰之间取得了很好的平衡。仿真结果表明了该策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信