Anomaly Detection over Clustering Multi-dimensional Transactional Audit Streams

N. Park, W. Lee
{"title":"Anomaly Detection over Clustering Multi-dimensional Transactional Audit Streams","authors":"N. Park, W. Lee","doi":"10.1109/IWSCA.2008.17","DOIUrl":null,"url":null,"abstract":"In anomaly detection, one important issue how to model the normal behavior of activities performed by a user is an important issue. To extract the normal behavior from the activities of a user, conventional data mining techniques are widely applied to a finite audit data set. However, these approaches can only model the static behavior of a user in the audit data set. This drawback can be overcome by viewing the continuous activities of a user as an audit data stream. This paper proposes an anomaly detection method that continuously models the normal behavior of a user over the multi-dimensional audit data stream. Each cluster represents the frequent range of the activities with respect to a set of features. As a result, without physically maintaining any historical activity of a user, the new activities of the user can be continuously reflected onto the on-going result. At the same time, various statistics of the activities related to the identified clusters are additionally modeled to improve the performance of anomaly detection. The proposed algorithm is analyzed by a series of experiments to identify various characteristics.","PeriodicalId":425055,"journal":{"name":"2008 IEEE International Workshop on Semantic Computing and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Workshop on Semantic Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSCA.2008.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In anomaly detection, one important issue how to model the normal behavior of activities performed by a user is an important issue. To extract the normal behavior from the activities of a user, conventional data mining techniques are widely applied to a finite audit data set. However, these approaches can only model the static behavior of a user in the audit data set. This drawback can be overcome by viewing the continuous activities of a user as an audit data stream. This paper proposes an anomaly detection method that continuously models the normal behavior of a user over the multi-dimensional audit data stream. Each cluster represents the frequent range of the activities with respect to a set of features. As a result, without physically maintaining any historical activity of a user, the new activities of the user can be continuously reflected onto the on-going result. At the same time, various statistics of the activities related to the identified clusters are additionally modeled to improve the performance of anomaly detection. The proposed algorithm is analyzed by a series of experiments to identify various characteristics.
聚类多维事务审计流的异常检测
在异常检测中,如何对用户活动的正常行为进行建模是一个重要的问题。为了从用户的活动中提取正常的行为,传统的数据挖掘技术被广泛应用于有限的审计数据集。但是,这些方法只能对审计数据集中用户的静态行为进行建模。可以通过将用户的连续活动视为审计数据流来克服这个缺点。本文提出了一种通过多维审计数据流对用户的正常行为进行连续建模的异常检测方法。每个集群表示相对于一组特征的活动的频繁范围。因此,无需物理地维护用户的任何历史活动,用户的新活动可以连续地反映到正在进行的结果中。同时,对与所识别的聚类相关的活动的各种统计数据进行建模,以提高异常检测的性能。通过一系列实验对算法进行分析,识别出各种特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信