SparseLU, A Novel Algorithm and Math Library for Sparse LU Factorization

Pedro Valero-Lara, Cameron Greenwalt, J. Vetter
{"title":"SparseLU, A Novel Algorithm and Math Library for Sparse LU Factorization","authors":"Pedro Valero-Lara, Cameron Greenwalt, J. Vetter","doi":"10.1109/IA356718.2022.00010","DOIUrl":null,"url":null,"abstract":"Decomposing sparse matrices into lower and upper triangular matrices (sparse LU factorization) is a key operation in many computational scientific applications. We developed SparseLU, a sparse linear algebra library that implements a new algorithm for LU factorization on general sparse matrices. The new algorithm divides the input matrix into tiles to which OpenMP tasks are created for factorization computation, where only tiles that contain nonzero elements are computed. For comparative performance analysis, we used the reference library SuperLU. Testing was performed on synthetically generated matrices which replicate the conditions of the real-world matrices. SparseLU is able to reach a mean speedup of ~29× compared to SuperLU.","PeriodicalId":144759,"journal":{"name":"2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms (IA3)","volume":"1198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms (IA3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IA356718.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decomposing sparse matrices into lower and upper triangular matrices (sparse LU factorization) is a key operation in many computational scientific applications. We developed SparseLU, a sparse linear algebra library that implements a new algorithm for LU factorization on general sparse matrices. The new algorithm divides the input matrix into tiles to which OpenMP tasks are created for factorization computation, where only tiles that contain nonzero elements are computed. For comparative performance analysis, we used the reference library SuperLU. Testing was performed on synthetically generated matrices which replicate the conditions of the real-world matrices. SparseLU is able to reach a mean speedup of ~29× compared to SuperLU.
稀疏逻辑单元分解的一种新算法和数学库
将稀疏矩阵分解为上下三角矩阵(稀疏LU分解)是许多计算科学应用中的关键操作。我们开发了一个稀疏线性代数库SparseLU,它实现了一种对一般稀疏矩阵进行LU分解的新算法。新算法将输入矩阵划分为块,为分解计算创建OpenMP任务,其中只计算包含非零元素的块。为了比较性能分析,我们使用了参考库SuperLU。测试是在合成生成的矩阵上进行的,它复制了现实世界矩阵的条件。与SuperLU相比,SparseLU能够达到约29倍的平均加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信