An effective SVM-based active feedback framework for image retrieval

Yunbo Rao, W. Liu, Shiqi Wang, Jianping Gou, Wu He
{"title":"An effective SVM-based active feedback framework for image retrieval","authors":"Yunbo Rao, W. Liu, Shiqi Wang, Jianping Gou, Wu He","doi":"10.1109/SPAC.2017.8304281","DOIUrl":null,"url":null,"abstract":"Due to the time and hardware restriction, the amount of feedback information is limited in each image retrieval loop. To solve this problem, this paper proposes an effective relevance feedback (RF) method based on Support Vector Machine (SVM) framework, which increases the amount of feedback information by cluster analysis and utilizing unlabeled images to build SVM classifier. As a result, a pseudo-label strategy, consist of a feature subspace partition algorithm and a cluster analysis scheme, is proposed for unlabeled images selection. Experimental results demonstrate the relative high effectiveness of our proposed active framework.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"34 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the time and hardware restriction, the amount of feedback information is limited in each image retrieval loop. To solve this problem, this paper proposes an effective relevance feedback (RF) method based on Support Vector Machine (SVM) framework, which increases the amount of feedback information by cluster analysis and utilizing unlabeled images to build SVM classifier. As a result, a pseudo-label strategy, consist of a feature subspace partition algorithm and a cluster analysis scheme, is proposed for unlabeled images selection. Experimental results demonstrate the relative high effectiveness of our proposed active framework.
一种有效的基于svm的图像检索主动反馈框架
由于时间和硬件的限制,每个图像检索回路的反馈信息量有限。针对这一问题,本文提出了一种有效的基于支持向量机(SVM)框架的相关反馈(RF)方法,通过聚类分析增加反馈信息量,利用未标记图像构建SVM分类器。为此,提出了一种由特征子空间划分算法和聚类分析方案组成的伪标签策略,用于无标签图像的选择。实验结果表明,我们提出的主动框架具有较高的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信