Anchor Selection for Localization in Large Indoor Venues

Omotayo Oshiga, Xiaowen Chu, Y. Leung, J. Ng
{"title":"Anchor Selection for Localization in Large Indoor Venues","authors":"Omotayo Oshiga, Xiaowen Chu, Y. Leung, J. Ng","doi":"10.1109/IWQoS.2018.8624131","DOIUrl":null,"url":null,"abstract":"Many indoor localization systems rely on a set of reference anchors with known positions. A target's location is estimated from a set of distances between the target and its surrounding anchors, and hence the selection of anchors affects the localization accuracy. However, it remains a challenge to select the best set of anchors. In this paper, we study how to appropriately make use of the surrounding anchors for localizing a target. We first construct different candidate anchor clusters by selecting different number of anchors with the strongest received signals. Then for each candidate cluster, we propose a weighted min-max algorithm to provide a location estimation. Finally, we introduce a weighted geometric dilution of precision (w-GDOP) algorithm that combines the estimations from multiple clusters by quantifying their estimation accuracy. We evaluate the performance of our solution through simulations and real-world experiments. Our results show that the proposed anchor selection scheme and localization algorithm significantly improve the localization accuracy in large indoor environments.","PeriodicalId":222290,"journal":{"name":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2018.8624131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Many indoor localization systems rely on a set of reference anchors with known positions. A target's location is estimated from a set of distances between the target and its surrounding anchors, and hence the selection of anchors affects the localization accuracy. However, it remains a challenge to select the best set of anchors. In this paper, we study how to appropriately make use of the surrounding anchors for localizing a target. We first construct different candidate anchor clusters by selecting different number of anchors with the strongest received signals. Then for each candidate cluster, we propose a weighted min-max algorithm to provide a location estimation. Finally, we introduce a weighted geometric dilution of precision (w-GDOP) algorithm that combines the estimations from multiple clusters by quantifying their estimation accuracy. We evaluate the performance of our solution through simulations and real-world experiments. Our results show that the proposed anchor selection scheme and localization algorithm significantly improve the localization accuracy in large indoor environments.
大型室内场馆定位的锚点选择
许多室内定位系统依赖于一组已知位置的参考锚点。目标的位置是根据目标与其周围锚点之间的一组距离来估计的,因此锚点的选择影响定位精度。然而,选择最好的主播仍然是一个挑战。在本文中,我们研究了如何适当地利用周围的锚来定位目标。我们首先通过选择不同数量的接收信号最强的锚点来构建不同的候选锚点簇。然后,针对每个候选聚类,我们提出了加权最小-最大算法来提供位置估计。最后,我们引入了加权几何精度稀释(w-GDOP)算法,该算法通过量化多个聚类的估计精度来组合多个聚类的估计。我们通过模拟和真实世界的实验来评估我们的解决方案的性能。结果表明,所提出的锚点选择方案和定位算法显著提高了大型室内环境下的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信