{"title":"An FFT-based acquisition scheme for DS-CDM a systems","authors":"Alexandre P. Almeida, Rui Dinis, F. Cercas","doi":"10.1109/ISCIT.2007.4392144","DOIUrl":null,"url":null,"abstract":"This paper introduces an efficient acquisition/correlation technique for DS-CDMA systems using a frequency-domain approach employing TCH-based training blocks (Tomlison, Cercas and Hughes). The classical time-domain active acquisition technique is compared with the proposed passive matched-filter type frequency domain technique. Moreover using the fact that an N-point discrete Fourier transform (DFT) can be partitioned into M smaller DFTs, we present a procedure for simultaneous decoding/despreading and synchronization that switch between 16 bit-length and 256 bit-length cyclic codes thus providing code rate variability.","PeriodicalId":331439,"journal":{"name":"2007 International Symposium on Communications and Information Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Communications and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2007.4392144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper introduces an efficient acquisition/correlation technique for DS-CDMA systems using a frequency-domain approach employing TCH-based training blocks (Tomlison, Cercas and Hughes). The classical time-domain active acquisition technique is compared with the proposed passive matched-filter type frequency domain technique. Moreover using the fact that an N-point discrete Fourier transform (DFT) can be partitioned into M smaller DFTs, we present a procedure for simultaneous decoding/despreading and synchronization that switch between 16 bit-length and 256 bit-length cyclic codes thus providing code rate variability.