Adaptive mobile VR content delivery for industrial 5.0

Mushu Li, Jie Ying Gao, Conghao Zhou, X. Shen, W. Zhuang
{"title":"Adaptive mobile VR content delivery for industrial 5.0","authors":"Mushu Li, Jie Ying Gao, Conghao Zhou, X. Shen, W. Zhuang","doi":"10.1145/3566099.3569002","DOIUrl":null,"url":null,"abstract":"Mobile virtual reality (VR) is expected to be a key component of the next-generation industrial internet-of-things, which uses immersive technologies to boost virtualization and facilitate human-machine collaboration in Industry 5.0. In this paper, we design a VR content delivery scheme to enhance VR content playback quality in mobile edge computing. The proposed scheme schedules computing resources on network edge to satisfy VR content requests from multiple user devices while reducing the likelihood of rebuffering and improving content freshness during VR video playback. With limited computing resources at the edge server, we develop a deep reinforcement learning (DRL) approach to determine which requests should be satisfied first, given the network and the service dynamics. By analyzing the network dynamics using the Whittle index method, the proposed DRL-based scheme can improve VR service quality with minimal communication overhead in computing scheduling. Simulation results demonstrate that the proposed scheme significantly improves the quality of service for VR content delivery.","PeriodicalId":272675,"journal":{"name":"Proceedings of the 1st Workshop on Digital Twin & Edge AI for Industrial IoT","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Digital Twin & Edge AI for Industrial IoT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3566099.3569002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Mobile virtual reality (VR) is expected to be a key component of the next-generation industrial internet-of-things, which uses immersive technologies to boost virtualization and facilitate human-machine collaboration in Industry 5.0. In this paper, we design a VR content delivery scheme to enhance VR content playback quality in mobile edge computing. The proposed scheme schedules computing resources on network edge to satisfy VR content requests from multiple user devices while reducing the likelihood of rebuffering and improving content freshness during VR video playback. With limited computing resources at the edge server, we develop a deep reinforcement learning (DRL) approach to determine which requests should be satisfied first, given the network and the service dynamics. By analyzing the network dynamics using the Whittle index method, the proposed DRL-based scheme can improve VR service quality with minimal communication overhead in computing scheduling. Simulation results demonstrate that the proposed scheme significantly improves the quality of service for VR content delivery.
工业5.0的自适应移动VR内容交付
移动虚拟现实(VR)预计将成为下一代工业物联网的关键组成部分,它使用沉浸式技术来促进工业5.0中的虚拟化和促进人机协作。本文设计了一种VR内容分发方案,以提高移动边缘计算中VR内容的播放质量。该方案调度网络边缘的计算资源,以满足来自多个用户设备的VR内容请求,同时减少VR视频播放过程中重新缓冲的可能性,提高内容新鲜度。由于边缘服务器上的计算资源有限,我们开发了一种深度强化学习(DRL)方法,以确定在给定网络和服务动态的情况下,应该首先满足哪些请求。利用Whittle指数法分析网络动态,提出的基于drl的方案可以在计算调度中以最小的通信开销提高虚拟现实服务质量。仿真结果表明,该方案显著提高了虚拟现实内容交付的服务质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信