Universal embeddings for kernel machine classification

P. Boufounos, H. Mansour
{"title":"Universal embeddings for kernel machine classification","authors":"P. Boufounos, H. Mansour","doi":"10.1109/SAMPTA.2015.7148902","DOIUrl":null,"url":null,"abstract":"Visual inference over a transmission channel is increasingly becoming an important problem in a variety of applications. In such applications, low latency and bit-rate consumption are often critical performance metrics, making data compression necessary. In this paper, we examine feature compression for support vector machine (SVM)-based inference using quantized randomized embeddings. We demonstrate that embedding the features is equivalent to using the SVM kernel trick with a mapping to a lower dimensional space. Furthermore, we show that universal embeddings-a recently proposed quantized embedding design-approximate a radial basis function (RBF) kernel, commonly used for kernel-based inference. Our experimental results demonstrate that quantized embeddings achieve 50% rate reduction, while maintaining the same inference performance. Moreover, universal embeddings achieve a further reduction in bit-rate over conventional quantized embedding methods, validating the theoretical predictions.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Visual inference over a transmission channel is increasingly becoming an important problem in a variety of applications. In such applications, low latency and bit-rate consumption are often critical performance metrics, making data compression necessary. In this paper, we examine feature compression for support vector machine (SVM)-based inference using quantized randomized embeddings. We demonstrate that embedding the features is equivalent to using the SVM kernel trick with a mapping to a lower dimensional space. Furthermore, we show that universal embeddings-a recently proposed quantized embedding design-approximate a radial basis function (RBF) kernel, commonly used for kernel-based inference. Our experimental results demonstrate that quantized embeddings achieve 50% rate reduction, while maintaining the same inference performance. Moreover, universal embeddings achieve a further reduction in bit-rate over conventional quantized embedding methods, validating the theoretical predictions.
核机分类的通用嵌入
在传输信道上的视觉推断日益成为各种应用中的一个重要问题。在这样的应用程序中,低延迟和比特率消耗通常是关键的性能指标,因此必须进行数据压缩。在本文中,我们使用量化随机嵌入来研究基于支持向量机(SVM)推理的特征压缩。我们证明了嵌入特征相当于使用映射到低维空间的SVM核技巧。此外,我们证明了通用嵌入-最近提出的量化嵌入设计-近似于径向基函数(RBF)核,通常用于基于核的推理。实验结果表明,在保持推理性能不变的情况下,量化嵌入的识别率降低了50%。此外,通用嵌入比传统的量化嵌入方法进一步降低了比特率,验证了理论预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信