{"title":"Increasing the Efficiency of Next-Generation Space Operations by Exploiting Predictability","authors":"Daniel Fischer, K. Eckstein, D. Basin, T. Engel","doi":"10.1109/SMC-IT.2009.44","DOIUrl":null,"url":null,"abstract":"From a mobile networking perspective, spacecraft networks are characterized by the predictability of node movement and communication opportunities. We show that payload data throughput, spacecraft commanding, and mission autonomy can be enhanced by using a predicable mobile routing protocol. We validate our claims through realistic network simulations in the context of a complex communication infrastructure for a next-generation Mars mission. Moreover, we propose routing protocol enhancements that also takes intermittently connected links into account as they occur in delay-tolerant networking. Finally, we analyze the operational impact and capabilities of the routing protocol on spacecraft commanding and operations.","PeriodicalId":422009,"journal":{"name":"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC-IT.2009.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
From a mobile networking perspective, spacecraft networks are characterized by the predictability of node movement and communication opportunities. We show that payload data throughput, spacecraft commanding, and mission autonomy can be enhanced by using a predicable mobile routing protocol. We validate our claims through realistic network simulations in the context of a complex communication infrastructure for a next-generation Mars mission. Moreover, we propose routing protocol enhancements that also takes intermittently connected links into account as they occur in delay-tolerant networking. Finally, we analyze the operational impact and capabilities of the routing protocol on spacecraft commanding and operations.