Avoiding Errors in Learned Heuristics in Bounded-Suboptimal Search

M. Greco, Jorge A. Baier
{"title":"Avoiding Errors in Learned Heuristics in Bounded-Suboptimal Search","authors":"M. Greco, Jorge A. Baier","doi":"10.1609/socs.v15i1.21804","DOIUrl":null,"url":null,"abstract":"Despite being very effective, learned heuristics in bounded-suboptimal search can produce heuristic plateaus or move the search to zones of the state space that do not lead to a solution. In addition, it produces\ninadmissible cost-to-go estimates; therefore, it cannot be exploited with classical algorithms like WA* to produce w-optimal solutions. In this paper, we present two ways in which Focal Search can be modified to exploit a learned heuristic in a bounded suboptimal search: Focal Discrepancy Search, which, to evaluate each state, uses a discrepancy score based on the best-predicted heuristic value; and K-Focal Search,\nwhich expands more than one node from the FOCAL list in each expansion cycle. Both algorithms return w-optimal solutions and explore different zones of the state space than the ones that focal search, using the learned heuristic to sort the FOCAL list, would explore.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v15i1.21804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite being very effective, learned heuristics in bounded-suboptimal search can produce heuristic plateaus or move the search to zones of the state space that do not lead to a solution. In addition, it produces inadmissible cost-to-go estimates; therefore, it cannot be exploited with classical algorithms like WA* to produce w-optimal solutions. In this paper, we present two ways in which Focal Search can be modified to exploit a learned heuristic in a bounded suboptimal search: Focal Discrepancy Search, which, to evaluate each state, uses a discrepancy score based on the best-predicted heuristic value; and K-Focal Search, which expands more than one node from the FOCAL list in each expansion cycle. Both algorithms return w-optimal solutions and explore different zones of the state space than the ones that focal search, using the learned heuristic to sort the FOCAL list, would explore.
有界次优搜索中学习启发式算法的避免错误
尽管有界次优搜索中的学习启发式算法非常有效,但它可能会产生启发式平台,或者将搜索移动到状态空间中无法找到解决方案的区域。此外,它还会产生令人难以接受的预估成本;因此,它不能被像WA*这样的经典算法利用来产生w-最优解。在本文中,我们提出了两种方法,可以修改焦点搜索来利用有界次优搜索中的学习启发式:焦点差异搜索,它使用基于最佳预测启发式值的差异评分来评估每个状态;以及K-Focal Search,它在每个扩展周期中从FOCAL列表中扩展多个节点。这两种算法都返回w-最优解,并且探索不同于焦点搜索的状态空间区域,使用学习的启发式对焦点列表进行排序,将探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信