Sampled-data iterative learning control for a class of nonlinear systems

Mingxuan Sun, Danwei W. Wang
{"title":"Sampled-data iterative learning control for a class of nonlinear systems","authors":"Mingxuan Sun, Danwei W. Wang","doi":"10.1109/ISIC.1999.796678","DOIUrl":null,"url":null,"abstract":"In this paper, a sampled-data iterative learning control (ILC) method is proposed for a class of nonlinear continuous-time systems with higher-order relative degree. The learning control does not require differentiation of tracking error. As the sampling period is set to be small enough, a sufficient condition is derived to guarantee the convergence of the learning process. This method can be applied to a more general class of nonlinear continuous-time systems that the most existing ILC methods fail to work.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a sampled-data iterative learning control (ILC) method is proposed for a class of nonlinear continuous-time systems with higher-order relative degree. The learning control does not require differentiation of tracking error. As the sampling period is set to be small enough, a sufficient condition is derived to guarantee the convergence of the learning process. This method can be applied to a more general class of nonlinear continuous-time systems that the most existing ILC methods fail to work.
一类非线性系统的采样数据迭代学习控制
针对一类具有高阶相对度的非线性连续系统,提出了一种采样数据迭代学习控制方法。学习控制不需要微分跟踪误差。在采样周期足够小的情况下,导出了保证学习过程收敛的充分条件。该方法可以应用于更一般的一类非线性连续系统,而大多数现有的ILC方法都不起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信