Performance Comparison between Multi-FPGA Prototyping Platforms: Hardwired Off-the-Shelf, Cabling, and Custom

Qingshan Tang, M. Tuna, H. Mehrez
{"title":"Performance Comparison between Multi-FPGA Prototyping Platforms: Hardwired Off-the-Shelf, Cabling, and Custom","authors":"Qingshan Tang, M. Tuna, H. Mehrez","doi":"10.1109/FCCM.2014.44","DOIUrl":null,"url":null,"abstract":"We can classify multi-FPGA prototyping platforms in three categories: hardwired off-the-shelf, cabling and custom. Three points are developed in this paper. Firstly, an automatic design flow is proposed to generate a cabling platform and a custom platform for a given design. Then, the optimal width of cables for a cabling multi-FPGA platform is explored. Finally, the performances of these three multi-FPGA platforms are compared. The results show that the cabling platform achieves up to 82% gain in performance, and the custom platform achieves up to 100%, compared to the hardwired off-the-shelf platform. The custom platform achieves up to 20% gain in performance over the cabling platform. Therefore the results show that, apart from some stringent constraints (such as deployment cost or specific frequency needed), the relatively new cabling paradigm with the proposed automatic, inter-FPGA tracks distribution tool, offers an attractive alternative compared to the two other platforms.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We can classify multi-FPGA prototyping platforms in three categories: hardwired off-the-shelf, cabling and custom. Three points are developed in this paper. Firstly, an automatic design flow is proposed to generate a cabling platform and a custom platform for a given design. Then, the optimal width of cables for a cabling multi-FPGA platform is explored. Finally, the performances of these three multi-FPGA platforms are compared. The results show that the cabling platform achieves up to 82% gain in performance, and the custom platform achieves up to 100%, compared to the hardwired off-the-shelf platform. The custom platform achieves up to 20% gain in performance over the cabling platform. Therefore the results show that, apart from some stringent constraints (such as deployment cost or specific frequency needed), the relatively new cabling paradigm with the proposed automatic, inter-FPGA tracks distribution tool, offers an attractive alternative compared to the two other platforms.
多fpga原型平台之间的性能比较:硬连线现成,布线和自定义
我们可以将多fpga原型平台分为三类:硬连线现成,布线和自定义。本文主要阐述了三点。首先,提出了一种自动设计流程,用于生成给定设计的布线平台和自定义平台。然后,探讨了多fpga布线平台的最优电缆宽度。最后,比较了这三种多fpga平台的性能。结果表明,与硬件连接的现成平台相比,布线平台的性能提高了82%,定制平台的性能提高了100%。与布线平台相比,定制平台的性能可提高20%。因此,结果表明,除了一些严格的限制(如部署成本或所需的特定频率)之外,与其他两个平台相比,相对较新的布线范例与所提出的自动fpga间轨道分布工具提供了一个有吸引力的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信