Sensing and decoding of visual stimuli using commercial Brain Computer Interface technology

K. George, Adrian Iniguez, Hayden Donze
{"title":"Sensing and decoding of visual stimuli using commercial Brain Computer Interface technology","authors":"K. George, Adrian Iniguez, Hayden Donze","doi":"10.1109/I2MTC.2014.6860913","DOIUrl":null,"url":null,"abstract":"This paper presents experiments using Brain Computer Interface technology and artificial neural networks to identify simple images viewed by a human subject. Electro-encephalograph (EEG) data is collected from subjects viewing images made up of 2×2 black and white squares using Matlab software and the commercially available Emotiv Epoc headset. Artificial neural networks (ANNs) are used to map EEG data to a pixel array representing the image the subject is viewing. ANNs emulate a biological brain as an array of interconnected nodes which can be trained to match an arbitrary set of inputs to a given set of outputs. In this way, the neural network can map EEG data to a particular image the subject was viewing, allowing the network to classify new EEG image data from other human subjects.","PeriodicalId":331484,"journal":{"name":"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2014.6860913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents experiments using Brain Computer Interface technology and artificial neural networks to identify simple images viewed by a human subject. Electro-encephalograph (EEG) data is collected from subjects viewing images made up of 2×2 black and white squares using Matlab software and the commercially available Emotiv Epoc headset. Artificial neural networks (ANNs) are used to map EEG data to a pixel array representing the image the subject is viewing. ANNs emulate a biological brain as an array of interconnected nodes which can be trained to match an arbitrary set of inputs to a given set of outputs. In this way, the neural network can map EEG data to a particular image the subject was viewing, allowing the network to classify new EEG image data from other human subjects.
利用商用脑机接口技术感知和解码视觉刺激
本文介绍了利用脑机接口技术和人工神经网络来识别人类受试者观看的简单图像的实验。使用Matlab软件和市售的Emotiv Epoc耳机,从观看由2×2黑白方块组成的图像的受试者中收集脑电图(EEG)数据。人工神经网络(ann)用于将EEG数据映射到代表受试者正在观看的图像的像素阵列。人工神经网络将生物大脑模拟为一组相互连接的节点,这些节点可以被训练成将任意一组输入与给定一组输出相匹配。通过这种方式,神经网络可以将EEG数据映射到受试者正在观看的特定图像,从而允许网络对来自其他人类受试者的新EEG图像数据进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信