Musraini M Musraini M, R. Efendi, Rolan Pane, Endang Lily
{"title":"Sebuah Generalisasi Baru Barisan Fibonacci-Lucas","authors":"Musraini M Musraini M, R. Efendi, Rolan Pane, Endang Lily","doi":"10.32734/st.v2i2.478","DOIUrl":null,"url":null,"abstract":"Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi \nB_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s \ndengan b dan s bilangan bulat tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan. \n \nThe Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation \nB_n=B_(n-1)+B_(n-2),n≥2, with , B_0=2b,B_1=s \nwhere b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.","PeriodicalId":117967,"journal":{"name":"Talenta Conference Series: Science and Technology (ST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talenta Conference Series: Science and Technology (ST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32734/st.v2i2.478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi
B_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s
dengan b dan s bilangan bulat tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan.
The Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation
B_n=B_(n-1)+B_(n-2),n≥2, with , B_0=2b,B_1=s
where b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.
斐波那契序列和卢卡斯序列已通过多种方式被广义化,有些是通过保留初始条件,有些是通过保留递推关系。本文提出了对斐波那契-卢卡斯序列的新概化,其定义为递推关系 B_n=B_(n-1)+B_(n-2),n≥2,B_0=2b,B_1=s,其中 b 和 s 均为非负整数。此外,还利用比奈公式和其他简单方法生成和推导了一些等式。还讨论了行列式形式的一些等式。 斐波那契数列和卢卡斯数列已通过多种方式得到推广,其中一些是通过保留初始条件,另一些则是通过保留递推关系。本文引入了斐波那契-卢卡斯序列的新广义,并通过递推关系 B_n=B_(n-1)+B_(n-2),n≥2 进行定义,其中,B_0=2b,B_1=s,b 和 s 是非负整数。此外,还通过比奈公式和其他简单方法生成和推导了一些等式。此外,还讨论了一些行列式等式。