Evolutionary Circular Extreme Learning Machine

Sarutte Atsawaraungsuk, Punyaphol Horata, K. Sunat, S. Chiewchanwattana, P. Musigawan
{"title":"Evolutionary Circular Extreme Learning Machine","authors":"Sarutte Atsawaraungsuk, Punyaphol Horata, K. Sunat, S. Chiewchanwattana, P. Musigawan","doi":"10.1109/ICSEC.2013.6694796","DOIUrl":null,"url":null,"abstract":"Circular Extreme Learning Machine (C-ELM) is an extension of Extreme Learning Machine. Its power is mapping both linear and circular separation boundaries. However, C-ELM uses the random determination of the input weights and hidden biases, which may lead to local optimal. This paper proposes a hybrid learning algorithms based on the C-ELM and the Differential Evolution (DE) to select appropriate weights and hidden biases. It called Evolutionary circular extreme learning machine (EC-ELM). From experimental results show EC-ELM can slightly improve C-ELM and also reduce the number of nodes network.","PeriodicalId":191620,"journal":{"name":"2013 International Computer Science and Engineering Conference (ICSEC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC.2013.6694796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Circular Extreme Learning Machine (C-ELM) is an extension of Extreme Learning Machine. Its power is mapping both linear and circular separation boundaries. However, C-ELM uses the random determination of the input weights and hidden biases, which may lead to local optimal. This paper proposes a hybrid learning algorithms based on the C-ELM and the Differential Evolution (DE) to select appropriate weights and hidden biases. It called Evolutionary circular extreme learning machine (EC-ELM). From experimental results show EC-ELM can slightly improve C-ELM and also reduce the number of nodes network.
进化循环极限学习机
环形极限学习机(C-ELM)是极限学习机的扩展。它的功能是映射线性和圆形分离边界。然而,C-ELM使用随机确定输入权值和隐藏偏差,这可能导致局部最优。本文提出了一种基于C-ELM和差分进化(DE)的混合学习算法来选择合适的权重和隐藏偏差。它被称为进化循环极限学习机(EC-ELM)。实验结果表明,EC-ELM可以略微改进C-ELM,并减少网络节点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信