Non-isolated multiphase buck-boost converter design for electric vehicle applications

A. Sah, Kalnana Chaudhary, V. V. Ratnam
{"title":"Non-isolated multiphase buck-boost converter design for electric vehicle applications","authors":"A. Sah, Kalnana Chaudhary, V. V. Ratnam","doi":"10.1109/AICERA.2014.6908181","DOIUrl":null,"url":null,"abstract":"Since energy conservation is one of the important issue now days and making our planet pollution free. For these purposes researchers are suggesting alternatives. Battery fed motor vehicles is one of the emerging option rather than conventional fuel vehicles. Bidirectional DC-DC converters are now mostly used in electric vehicles. The main reason behind this is to operate motor in two quadrants as motoring and regenerative for making efficient operation. Bidirectional DC-DC converter consists of buck and boost converter. During motoring mode energy is supplied through a battery and in regenerative mode battery is charged through a DC link created. This paper primarily gives attention on control strategy used for operation. In this gate complimentary control used to trigger initially turned off switch and divert current through anti parallel connected diode of initially active switch so that main switch can be triggered under zero voltage switching.","PeriodicalId":425226,"journal":{"name":"2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICERA.2014.6908181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Since energy conservation is one of the important issue now days and making our planet pollution free. For these purposes researchers are suggesting alternatives. Battery fed motor vehicles is one of the emerging option rather than conventional fuel vehicles. Bidirectional DC-DC converters are now mostly used in electric vehicles. The main reason behind this is to operate motor in two quadrants as motoring and regenerative for making efficient operation. Bidirectional DC-DC converter consists of buck and boost converter. During motoring mode energy is supplied through a battery and in regenerative mode battery is charged through a DC link created. This paper primarily gives attention on control strategy used for operation. In this gate complimentary control used to trigger initially turned off switch and divert current through anti parallel connected diode of initially active switch so that main switch can be triggered under zero voltage switching.
用于电动汽车的非隔离多相降压-升压转换器设计
由于节能是当今重要的问题之一,使我们的地球无污染。出于这些目的,研究人员提出了一些替代方案。电池供电的汽车是一种新兴的选择,而不是传统的燃油汽车。双向DC-DC变换器目前主要用于电动汽车。这背后的主要原因是在两个象限运行电机作为电机和再生,使高效运行。双向DC-DC变换器由降压变换器和升压变换器组成。在运动模式下,能量是通过电池提供的,而在再生模式下,电池是通过直流链路充电的。本文主要研究了控制策略在运行中的应用。在此栅极中,互补控制用于触发初始关断开关,并通过初始主动开关的反并联二极管分流电流,从而在零电压开关下触发主开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信