Relevant and invariant feature selection of hyperspectral images for domain generalization

C. Persello, L. Bruzzone
{"title":"Relevant and invariant feature selection of hyperspectral images for domain generalization","authors":"C. Persello, L. Bruzzone","doi":"10.1109/IGARSS.2014.6947252","DOIUrl":null,"url":null,"abstract":"This paper presents a novel feature selection method for the analysis of hyperspectral images. The proposed method aims at selecting a subset of the original features that are both 1) relevant for the considered problem (i.e., preserve the functional relationship between input and output variables), and 2) invariant (stable) across different domains (i.e., minimize the data set shift among different domains). Domains can be associated with images collected on different areas or on the same area at different times. We propose a novel measure of domain stability, which evaluates the distance of the conditional distributions between the source and target domain. Such a measure is defined on the basis of kernel embeddings of conditional distributions and can be applied to both classification and regression problems. Experimental results show the effectiveness of the proposed method in selecting features with high generalization capabilities on the target domain.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a novel feature selection method for the analysis of hyperspectral images. The proposed method aims at selecting a subset of the original features that are both 1) relevant for the considered problem (i.e., preserve the functional relationship between input and output variables), and 2) invariant (stable) across different domains (i.e., minimize the data set shift among different domains). Domains can be associated with images collected on different areas or on the same area at different times. We propose a novel measure of domain stability, which evaluates the distance of the conditional distributions between the source and target domain. Such a measure is defined on the basis of kernel embeddings of conditional distributions and can be applied to both classification and regression problems. Experimental results show the effectiveness of the proposed method in selecting features with high generalization capabilities on the target domain.
面向领域泛化的高光谱图像相关不变特征选择
提出了一种新的用于高光谱图像分析的特征选择方法。所提出的方法旨在选择原始特征的子集,这些特征既与所考虑的问题相关(即,保留输入和输出变量之间的函数关系),又具有跨不同域的不变性(稳定)(即,最小化不同域之间的数据集移位)。域可以与在不同区域或不同时间在同一区域收集的图像相关联。我们提出了一种新的域稳定性度量方法,该方法评估源域和目标域之间条件分布的距离。这种度量是在条件分布的核嵌入的基础上定义的,可以应用于分类和回归问题。实验结果表明,该方法能够有效地选择目标域上具有较高泛化能力的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信